使用 515 nm 激光源进行 GRCop-42 激光粉末床熔融的工艺开发

IF 1.7 4区 工程技术 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY Journal of Laser Applications Pub Date : 2023-11-01 DOI:10.2351/7.0001139
S. Gruber, L. Stepien, L. Gerdt, E. López, Jan Kieser, F. Brueckner, Christoph Leyens, Craig Bratt
{"title":"使用 515 nm 激光源进行 GRCop-42 激光粉末床熔融的工艺开发","authors":"S. Gruber, L. Stepien, L. Gerdt, E. López, Jan Kieser, F. Brueckner, Christoph Leyens, Craig Bratt","doi":"10.2351/7.0001139","DOIUrl":null,"url":null,"abstract":"Copper is widely used in high heat flux and electrical applications because of its excellent electrical and thermal conductivity properties. Alloying elements such as chromium or nickel are added to strengthen the material, especially for higher temperatures. Cu4Cr2Nb, also known as GRCop-42, is a dispersion-strengthened copper-chromium-niobium alloy developed by NASA for high-temperature applications with high thermal and mechanical stresses such as rocket engines. Additive manufacturing (AM) enables applications with complex functionalized geometries and is particularly promising in the aerospace industry. In this contribution, a parametric study was performed for GRCop-42 and the AM process laser powder bed fusion (PBF-LB/M) using a green laser source for two-layer thicknesses of 30 and 60 μm. Density, electrical conductivity, hardness, microstructure, and static mechanical properties were analyzed. Various heat treatments ranging from 400 to 1000 °C and 30 min to 4 h were tested to increase the electrical conductivity and hardness. For both layer thicknesses, dense parameter sets could be obtained with resulting relative densities above 99.8%. Hardness and electrical conductivity could be tailored in the range of 103–219 HV2 and 24%–88% International Annealed Copper Standard (IACS) depending on the heat treatment. The highest ultimate tensile strength (UTS) obtained was 493 MPa. An aging temperature of 700 °C for 30 min showed the best combination of room temperature properties such as electrical conductivity of 83.76%IACS, UTS of 481 MPa, elongation at break (A) at 24%, and hardness of 125 HV2.","PeriodicalId":50168,"journal":{"name":"Journal of Laser Applications","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Process development for laser powder bed fusion of GRCop-42 using a 515 nm laser source\",\"authors\":\"S. Gruber, L. Stepien, L. Gerdt, E. López, Jan Kieser, F. Brueckner, Christoph Leyens, Craig Bratt\",\"doi\":\"10.2351/7.0001139\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Copper is widely used in high heat flux and electrical applications because of its excellent electrical and thermal conductivity properties. Alloying elements such as chromium or nickel are added to strengthen the material, especially for higher temperatures. Cu4Cr2Nb, also known as GRCop-42, is a dispersion-strengthened copper-chromium-niobium alloy developed by NASA for high-temperature applications with high thermal and mechanical stresses such as rocket engines. Additive manufacturing (AM) enables applications with complex functionalized geometries and is particularly promising in the aerospace industry. In this contribution, a parametric study was performed for GRCop-42 and the AM process laser powder bed fusion (PBF-LB/M) using a green laser source for two-layer thicknesses of 30 and 60 μm. Density, electrical conductivity, hardness, microstructure, and static mechanical properties were analyzed. Various heat treatments ranging from 400 to 1000 °C and 30 min to 4 h were tested to increase the electrical conductivity and hardness. For both layer thicknesses, dense parameter sets could be obtained with resulting relative densities above 99.8%. Hardness and electrical conductivity could be tailored in the range of 103–219 HV2 and 24%–88% International Annealed Copper Standard (IACS) depending on the heat treatment. The highest ultimate tensile strength (UTS) obtained was 493 MPa. An aging temperature of 700 °C for 30 min showed the best combination of room temperature properties such as electrical conductivity of 83.76%IACS, UTS of 481 MPa, elongation at break (A) at 24%, and hardness of 125 HV2.\",\"PeriodicalId\":50168,\"journal\":{\"name\":\"Journal of Laser Applications\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2023-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Laser Applications\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.2351/7.0001139\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Laser Applications","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.2351/7.0001139","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

铜具有出色的导电和导热性能,因此被广泛应用于高热通量和电气应用领域。添加铬或镍等合金元素可增强材料的强度,尤其是在高温条件下。Cu4Cr2Nb 又称 GRCop-42,是美国国家航空航天局开发的一种分散强化铜铬铌合金,适用于火箭发动机等热应力和机械应力较高的高温应用。增材制造(AM)可实现复杂功能化几何形状的应用,在航空航天工业中尤其大有可为。在本文中,我们对 GRCop-42 和使用绿色激光源的激光粉末床熔融(PBF-LB/M)AM 工艺进行了参数研究,两层厚度分别为 30 μm 和 60 μm。对密度、导电性、硬度、微观结构和静态机械性能进行了分析。为了提高导电率和硬度,测试了 400 至 1000 °C、30 分钟至 4 小时的各种热处理。对于两种厚度的层,都能获得致密的参数集,相对密度超过 99.8%。根据热处理的不同,硬度和导电率的范围分别为 103-219 HV2 和 24%-88% 国际退火铜标准(IACS)。获得的最高极限拉伸强度(UTS)为 493 兆帕。在 700 °C 的老化温度下老化 30 分钟显示出室温特性的最佳组合,如电导率为 83.76%IACS、UTS 为 481 兆帕、断裂伸长率 (A) 为 24%、硬度为 125 HV2。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Process development for laser powder bed fusion of GRCop-42 using a 515 nm laser source
Copper is widely used in high heat flux and electrical applications because of its excellent electrical and thermal conductivity properties. Alloying elements such as chromium or nickel are added to strengthen the material, especially for higher temperatures. Cu4Cr2Nb, also known as GRCop-42, is a dispersion-strengthened copper-chromium-niobium alloy developed by NASA for high-temperature applications with high thermal and mechanical stresses such as rocket engines. Additive manufacturing (AM) enables applications with complex functionalized geometries and is particularly promising in the aerospace industry. In this contribution, a parametric study was performed for GRCop-42 and the AM process laser powder bed fusion (PBF-LB/M) using a green laser source for two-layer thicknesses of 30 and 60 μm. Density, electrical conductivity, hardness, microstructure, and static mechanical properties were analyzed. Various heat treatments ranging from 400 to 1000 °C and 30 min to 4 h were tested to increase the electrical conductivity and hardness. For both layer thicknesses, dense parameter sets could be obtained with resulting relative densities above 99.8%. Hardness and electrical conductivity could be tailored in the range of 103–219 HV2 and 24%–88% International Annealed Copper Standard (IACS) depending on the heat treatment. The highest ultimate tensile strength (UTS) obtained was 493 MPa. An aging temperature of 700 °C for 30 min showed the best combination of room temperature properties such as electrical conductivity of 83.76%IACS, UTS of 481 MPa, elongation at break (A) at 24%, and hardness of 125 HV2.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.60
自引率
9.50%
发文量
125
审稿时长
>12 weeks
期刊介绍: The Journal of Laser Applications (JLA) is the scientific platform of the Laser Institute of America (LIA) and is published in cooperation with AIP Publishing. The high-quality articles cover a broad range from fundamental and applied research and development to industrial applications. Therefore, JLA is a reflection of the state-of-R&D in photonic production, sensing and measurement as well as Laser safety. The following international and well known first-class scientists serve as allocated Editors in 9 new categories: High Precision Materials Processing with Ultrafast Lasers Laser Additive Manufacturing High Power Materials Processing with High Brightness Lasers Emerging Applications of Laser Technologies in High-performance/Multi-function Materials and Structures Surface Modification Lasers in Nanomanufacturing / Nanophotonics & Thin Film Technology Spectroscopy / Imaging / Diagnostics / Measurements Laser Systems and Markets Medical Applications & Safety Thermal Transportation Nanomaterials and Nanoprocessing Laser applications in Microelectronics.
期刊最新文献
Research on a visual positioning method of paddy field weeding wheels based on laser rangefinder-camera calibration New thermal solver for mitigating surface temperature instability in laser-induced heating Statistical modeling and optimization of clad geometry in laser cladding of Amdry 961 on Inconel 713LC superalloy with response surface methodology Novel path planning algorithm for laser powder bed fusion to improve the scan quality of triply periodic minimal surface structures Laser hazard classification of a line laser with an astigmatic extended source
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1