用微分神经网络识别一类不确定开关系统的状态。

IF 1.1 3区 计算机科学 Q4 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Network-Computation in Neural Systems Pub Date : 2024-08-01 Epub Date: 2024-01-11 DOI:10.1080/0954898X.2023.2296115
Isaac Chairez, Alejandro Garcia-Gonzalez, Alberto Luviano-Juarez
{"title":"用微分神经网络识别一类不确定开关系统的状态。","authors":"Isaac Chairez, Alejandro Garcia-Gonzalez, Alberto Luviano-Juarez","doi":"10.1080/0954898X.2023.2296115","DOIUrl":null,"url":null,"abstract":"<p><p>This paper presents a non-parametric identification scheme for a class of uncertain switched nonlinear systems based on continuous-time neural networks. This scheme is based on a continuous neural network identifier. This adaptive identifier guaranteed the convergence of the identification errors to a small vicinity of the origin. The convergence of the identification error was determined by the Lyapunov theory supported by a practical stability variation for switched systems. The same stability analysis generated the learning laws that adjust the identifier structure. The upper bound of the convergence region was characterized in terms of uncertainties and noises affecting the switched system. A second finite-time convergence learning law was also developed to describe an alternative way of forcing the identification error's stability. The study presented in this paper described a formal technique for analysing the application of adaptive identifiers based on continuous neural networks for uncertain switched systems. The identifier was tested for two basic problems: a simple mechanical system and a switched representation of the human gait model. In both cases, accurate results for the identification problem were achieved.</p>","PeriodicalId":54735,"journal":{"name":"Network-Computation in Neural Systems","volume":" ","pages":"213-248"},"PeriodicalIF":1.1000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"State identification for a class of uncertain switched systems by differential neural networks.\",\"authors\":\"Isaac Chairez, Alejandro Garcia-Gonzalez, Alberto Luviano-Juarez\",\"doi\":\"10.1080/0954898X.2023.2296115\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This paper presents a non-parametric identification scheme for a class of uncertain switched nonlinear systems based on continuous-time neural networks. This scheme is based on a continuous neural network identifier. This adaptive identifier guaranteed the convergence of the identification errors to a small vicinity of the origin. The convergence of the identification error was determined by the Lyapunov theory supported by a practical stability variation for switched systems. The same stability analysis generated the learning laws that adjust the identifier structure. The upper bound of the convergence region was characterized in terms of uncertainties and noises affecting the switched system. A second finite-time convergence learning law was also developed to describe an alternative way of forcing the identification error's stability. The study presented in this paper described a formal technique for analysing the application of adaptive identifiers based on continuous neural networks for uncertain switched systems. The identifier was tested for two basic problems: a simple mechanical system and a switched representation of the human gait model. In both cases, accurate results for the identification problem were achieved.</p>\",\"PeriodicalId\":54735,\"journal\":{\"name\":\"Network-Computation in Neural Systems\",\"volume\":\" \",\"pages\":\"213-248\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2024-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Network-Computation in Neural Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1080/0954898X.2023.2296115\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/11 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Network-Computation in Neural Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1080/0954898X.2023.2296115","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/11 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种基于连续时间神经网络的不确定开关非线性系统的非参数识别方案。该方案基于连续神经网络识别器。这种自适应识别器保证了识别误差收敛到原点附近的小范围内。识别误差的收敛性是由里亚普诺夫理论决定的,该理论得到了开关系统实际稳定性变化的支持。同样的稳定性分析产生了调整识别器结构的学习定律。收敛区域的上限是根据影响开关系统的不确定性和噪声确定的。此外,还开发了第二种有限时间收敛学习定律,以描述迫使识别误差稳定的另一种方法。本文介绍的研究描述了一种正式技术,用于分析基于连续神经网络的自适应识别器在不确定开关系统中的应用。该识别器针对两个基本问题进行了测试:一个简单的机械系统和人类步态模型的切换表示。在这两种情况下,都取得了识别问题的准确结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
State identification for a class of uncertain switched systems by differential neural networks.

This paper presents a non-parametric identification scheme for a class of uncertain switched nonlinear systems based on continuous-time neural networks. This scheme is based on a continuous neural network identifier. This adaptive identifier guaranteed the convergence of the identification errors to a small vicinity of the origin. The convergence of the identification error was determined by the Lyapunov theory supported by a practical stability variation for switched systems. The same stability analysis generated the learning laws that adjust the identifier structure. The upper bound of the convergence region was characterized in terms of uncertainties and noises affecting the switched system. A second finite-time convergence learning law was also developed to describe an alternative way of forcing the identification error's stability. The study presented in this paper described a formal technique for analysing the application of adaptive identifiers based on continuous neural networks for uncertain switched systems. The identifier was tested for two basic problems: a simple mechanical system and a switched representation of the human gait model. In both cases, accurate results for the identification problem were achieved.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Network-Computation in Neural Systems
Network-Computation in Neural Systems 工程技术-工程:电子与电气
CiteScore
3.70
自引率
1.30%
发文量
22
审稿时长
>12 weeks
期刊介绍: Network: Computation in Neural Systems welcomes submissions of research papers that integrate theoretical neuroscience with experimental data, emphasizing the utilization of cutting-edge technologies. We invite authors and researchers to contribute their work in the following areas: Theoretical Neuroscience: This section encompasses neural network modeling approaches that elucidate brain function. Neural Networks in Data Analysis and Pattern Recognition: We encourage submissions exploring the use of neural networks for data analysis and pattern recognition, including but not limited to image analysis and speech processing applications. Neural Networks in Control Systems: This category encompasses the utilization of neural networks in control systems, including robotics, state estimation, fault detection, and diagnosis. Analysis of Neurophysiological Data: We invite submissions focusing on the analysis of neurophysiology data obtained from experimental studies involving animals. Analysis of Experimental Data on the Human Brain: This section includes papers analyzing experimental data from studies on the human brain, utilizing imaging techniques such as MRI, fMRI, EEG, and PET. Neurobiological Foundations of Consciousness: We encourage submissions exploring the neural bases of consciousness in the brain and its simulation in machines.
期刊最新文献
Performance analysis of image retrieval system using deep learning techniques. A novel efficient data storage and data auditing in cloud environment using enhanced child drawing development optimization strategy. Personalized recommendation system to handle skin cancer at early stage based on hybrid model. Robust text-dependent speaker verification system using gender aware Siamese-Triplet Deep Neural Network. Investigation on the reliability calculation method of gravity dam based on CNN-LSTM and Monte Carlo method.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1