{"title":"用于估算芒果质量指标和分级的改进型深度信念网络:基于计算机视觉的中性方法。","authors":"Mukesh Kumar Tripathi, Shivendra","doi":"10.1080/0954898X.2023.2299851","DOIUrl":null,"url":null,"abstract":"<p><p>This research introduces a revolutionary machinet learning algorithm-based quality estimation and grading system. The suggested work is divided into four main parts: Ppre-processing, neutroscopic model transformation, Feature Extraction, and Grading. The raw images are first pre-processed by following five major stages: read, resize, noise removal, contrast enhancement via CLAHE, and Smoothing via filtering. The pre-processed images are then converted into a neutrosophic domain for more effective mango grading. The image is processed under a new Geometric Mean based neutrosophic approach to transforming it into the neutrosophic domain. Finally, the prediction of TSS for the different chilling conditions is done by Improved Deep Belief Network (IDBN) and based on this; the grading of mango is done automatically as the model is already trained with it. Here, the prediction of TSS is carried out under the consideration of SSC, firmness, and TAC. A comparison between the proposed and traditional methods is carried out to confirm the efficacy of various metrics.</p>","PeriodicalId":54735,"journal":{"name":"Network-Computation in Neural Systems","volume":" ","pages":"249-277"},"PeriodicalIF":1.1000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Improved deep belief network for estimating mango quality indices and grading: A computer vision-based neutrosophic approach.\",\"authors\":\"Mukesh Kumar Tripathi, Shivendra\",\"doi\":\"10.1080/0954898X.2023.2299851\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This research introduces a revolutionary machinet learning algorithm-based quality estimation and grading system. The suggested work is divided into four main parts: Ppre-processing, neutroscopic model transformation, Feature Extraction, and Grading. The raw images are first pre-processed by following five major stages: read, resize, noise removal, contrast enhancement via CLAHE, and Smoothing via filtering. The pre-processed images are then converted into a neutrosophic domain for more effective mango grading. The image is processed under a new Geometric Mean based neutrosophic approach to transforming it into the neutrosophic domain. Finally, the prediction of TSS for the different chilling conditions is done by Improved Deep Belief Network (IDBN) and based on this; the grading of mango is done automatically as the model is already trained with it. Here, the prediction of TSS is carried out under the consideration of SSC, firmness, and TAC. A comparison between the proposed and traditional methods is carried out to confirm the efficacy of various metrics.</p>\",\"PeriodicalId\":54735,\"journal\":{\"name\":\"Network-Computation in Neural Systems\",\"volume\":\" \",\"pages\":\"249-277\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2024-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Network-Computation in Neural Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1080/0954898X.2023.2299851\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/15 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Network-Computation in Neural Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1080/0954898X.2023.2299851","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/15 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Improved deep belief network for estimating mango quality indices and grading: A computer vision-based neutrosophic approach.
This research introduces a revolutionary machinet learning algorithm-based quality estimation and grading system. The suggested work is divided into four main parts: Ppre-processing, neutroscopic model transformation, Feature Extraction, and Grading. The raw images are first pre-processed by following five major stages: read, resize, noise removal, contrast enhancement via CLAHE, and Smoothing via filtering. The pre-processed images are then converted into a neutrosophic domain for more effective mango grading. The image is processed under a new Geometric Mean based neutrosophic approach to transforming it into the neutrosophic domain. Finally, the prediction of TSS for the different chilling conditions is done by Improved Deep Belief Network (IDBN) and based on this; the grading of mango is done automatically as the model is already trained with it. Here, the prediction of TSS is carried out under the consideration of SSC, firmness, and TAC. A comparison between the proposed and traditional methods is carried out to confirm the efficacy of various metrics.
期刊介绍:
Network: Computation in Neural Systems welcomes submissions of research papers that integrate theoretical neuroscience with experimental data, emphasizing the utilization of cutting-edge technologies. We invite authors and researchers to contribute their work in the following areas:
Theoretical Neuroscience: This section encompasses neural network modeling approaches that elucidate brain function.
Neural Networks in Data Analysis and Pattern Recognition: We encourage submissions exploring the use of neural networks for data analysis and pattern recognition, including but not limited to image analysis and speech processing applications.
Neural Networks in Control Systems: This category encompasses the utilization of neural networks in control systems, including robotics, state estimation, fault detection, and diagnosis.
Analysis of Neurophysiological Data: We invite submissions focusing on the analysis of neurophysiology data obtained from experimental studies involving animals.
Analysis of Experimental Data on the Human Brain: This section includes papers analyzing experimental data from studies on the human brain, utilizing imaging techniques such as MRI, fMRI, EEG, and PET.
Neurobiological Foundations of Consciousness: We encourage submissions exploring the neural bases of consciousness in the brain and its simulation in machines.