论位错攀升是行星内部的重要变形机制

IF 11.3 1区 地球科学 Q1 ASTRONOMY & ASTROPHYSICS Annual Review of Earth and Planetary Sciences Pub Date : 2024-01-18 DOI:10.1146/annurev-earth-031621-063108
Philippe Carrez, Alexandre Mussi, Patrick Cordier
{"title":"论位错攀升是行星内部的重要变形机制","authors":"Philippe Carrez, Alexandre Mussi, Patrick Cordier","doi":"10.1146/annurev-earth-031621-063108","DOIUrl":null,"url":null,"abstract":"▪ An understanding of the rheological behavior of the solid Earth is fundamental to provide a quantitative description of most geological and geophysical phenomena. The continuum mechanics approach to describing large-scale phenomena needs to be informed by a description of the mechanisms operating at the atomic scale. These involve crystal defects, mainly vacancies and dislocations. This often leads to a binary view of creep reduced to diffusion creep or dislocation creep. However, the interaction between these two types of defects leading to dislocation climb plays an important role, and may even be the main one, in the high-temperature, low strain rate creep mechanisms of interest to the Earth sciences. Here we review the fundamentals of dislocation climb, highlighting the specific problems of minerals. We discuss the importance of computer simulations, informed by experiments, for accurately modeling climb. We show how dislocation climb increasingly appears as a deformation mechanism in its own right. We review the contribution of this mechanism to mineral deformation, particularly in Earth's mantle. Finally, we discuss progress and challenges, and we outline future work directions. Dislocations can be sources or sinks of vacancies, resulting in a displacement out of the glide plane: climb. ▪ Dislocation climb can be a recovery mechanism during dislocation creep but also a strain-producing mechanism. ▪ The slow natural strain rates promote the contribution of climb, which is controlled by diffusion. ▪ In planetary interiors where dislocation glide can be inhibited by pressure, dislocation climb may be the only active mechanism.Expected final online publication date for the Annual Review of Earth and Planetary Sciences, Volume 52 is May 2024. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.","PeriodicalId":8034,"journal":{"name":"Annual Review of Earth and Planetary Sciences","volume":null,"pages":null},"PeriodicalIF":11.3000,"publicationDate":"2024-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On Dislocation Climb as an Important Deformation Mechanism for Planetary Interiors\",\"authors\":\"Philippe Carrez, Alexandre Mussi, Patrick Cordier\",\"doi\":\"10.1146/annurev-earth-031621-063108\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"▪ An understanding of the rheological behavior of the solid Earth is fundamental to provide a quantitative description of most geological and geophysical phenomena. The continuum mechanics approach to describing large-scale phenomena needs to be informed by a description of the mechanisms operating at the atomic scale. These involve crystal defects, mainly vacancies and dislocations. This often leads to a binary view of creep reduced to diffusion creep or dislocation creep. However, the interaction between these two types of defects leading to dislocation climb plays an important role, and may even be the main one, in the high-temperature, low strain rate creep mechanisms of interest to the Earth sciences. Here we review the fundamentals of dislocation climb, highlighting the specific problems of minerals. We discuss the importance of computer simulations, informed by experiments, for accurately modeling climb. We show how dislocation climb increasingly appears as a deformation mechanism in its own right. We review the contribution of this mechanism to mineral deformation, particularly in Earth's mantle. Finally, we discuss progress and challenges, and we outline future work directions. Dislocations can be sources or sinks of vacancies, resulting in a displacement out of the glide plane: climb. ▪ Dislocation climb can be a recovery mechanism during dislocation creep but also a strain-producing mechanism. ▪ The slow natural strain rates promote the contribution of climb, which is controlled by diffusion. ▪ In planetary interiors where dislocation glide can be inhibited by pressure, dislocation climb may be the only active mechanism.Expected final online publication date for the Annual Review of Earth and Planetary Sciences, Volume 52 is May 2024. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.\",\"PeriodicalId\":8034,\"journal\":{\"name\":\"Annual Review of Earth and Planetary Sciences\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":11.3000,\"publicationDate\":\"2024-01-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annual Review of Earth and Planetary Sciences\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1146/annurev-earth-031621-063108\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual Review of Earth and Planetary Sciences","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1146/annurev-earth-031621-063108","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

了解固体地球的流变行为是定量描述大多数地质和地球物理现象的基础。描述大尺度现象的连续介质力学方法需要了解原子尺度的运行机制。这涉及晶体缺陷,主要是空位和位错。这往往导致二元蠕变观点,将蠕变简化为扩散蠕变或位错蠕变。然而,在地球科学感兴趣的高温、低应变速率蠕变机制中,导致位错攀升的这两类缺陷之间的相互作用起着重要作用,甚至可能是主要作用。在此,我们回顾了位错攀升的基本原理,并强调了矿物的具体问题。我们讨论了以实验为基础的计算机模拟对准确模拟位错攀升的重要性。我们展示了位错攀升如何日益成为一种变形机制。我们回顾了这种机制对矿物变形的贡献,尤其是在地球地幔中。最后,我们讨论了所取得的进展和面临的挑战,并概述了未来的工作方向。位错可以是空位的源或汇,从而导致滑移面外的位移:爬升。位错爬升可以是位错蠕变过程中的一种恢复机制,但也是一种应变产生机制。缓慢的自然应变速率会促进攀升,而攀升是由扩散控制的。在行星内部,差排滑行会受到压力的抑制,差排爬升可能是唯一活跃的机制。《地球与行星科学年度综述》第52卷的最终在线出版日期预计为2024年5月。修订后的预计日期请参见 http://www.annualreviews.org/page/journal/pubdates。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
On Dislocation Climb as an Important Deformation Mechanism for Planetary Interiors
▪ An understanding of the rheological behavior of the solid Earth is fundamental to provide a quantitative description of most geological and geophysical phenomena. The continuum mechanics approach to describing large-scale phenomena needs to be informed by a description of the mechanisms operating at the atomic scale. These involve crystal defects, mainly vacancies and dislocations. This often leads to a binary view of creep reduced to diffusion creep or dislocation creep. However, the interaction between these two types of defects leading to dislocation climb plays an important role, and may even be the main one, in the high-temperature, low strain rate creep mechanisms of interest to the Earth sciences. Here we review the fundamentals of dislocation climb, highlighting the specific problems of minerals. We discuss the importance of computer simulations, informed by experiments, for accurately modeling climb. We show how dislocation climb increasingly appears as a deformation mechanism in its own right. We review the contribution of this mechanism to mineral deformation, particularly in Earth's mantle. Finally, we discuss progress and challenges, and we outline future work directions. Dislocations can be sources or sinks of vacancies, resulting in a displacement out of the glide plane: climb. ▪ Dislocation climb can be a recovery mechanism during dislocation creep but also a strain-producing mechanism. ▪ The slow natural strain rates promote the contribution of climb, which is controlled by diffusion. ▪ In planetary interiors where dislocation glide can be inhibited by pressure, dislocation climb may be the only active mechanism.Expected final online publication date for the Annual Review of Earth and Planetary Sciences, Volume 52 is May 2024. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Annual Review of Earth and Planetary Sciences
Annual Review of Earth and Planetary Sciences 地学天文-地球科学综合
CiteScore
25.10
自引率
0.00%
发文量
25
期刊介绍: Since its establishment in 1973, the Annual Review of Earth and Planetary Sciences has been dedicated to providing comprehensive coverage of advancements in the field. This esteemed publication examines various aspects of earth and planetary sciences, encompassing climate, environment, geological hazards, planet formation, and the evolution of life. To ensure wider accessibility, the latest volume of the journal has transitioned from a gated model to open access through the Subscribe to Open program by Annual Reviews. Consequently, all articles published in this volume are now available under the Creative Commons Attribution (CC BY) license.
期刊最新文献
Grain Size in Landscapes The Geologic History of Plants and Climate in India Hydrotectonics of Grand Canyon Groundwater Evolution, Modification, and Deformation of Continental Lithosphere: Insights from the Eastern Margin of North America Cenozoic History of the Indonesian Gateway
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1