Muhammad Faisal Maqbool , Sameena Gul , Muhammad Ishaq , Amara Maryam , Muhammad Khan , Hafiz Abdullah Shakir , Muhammad Irfan , Yongming Li , Tonghui Ma
{"title":"茶褐素:一种具有多种抗癌机制的膳食营养保健品。","authors":"Muhammad Faisal Maqbool , Sameena Gul , Muhammad Ishaq , Amara Maryam , Muhammad Khan , Hafiz Abdullah Shakir , Muhammad Irfan , Yongming Li , Tonghui Ma","doi":"10.1080/14786419.2024.2306917","DOIUrl":null,"url":null,"abstract":"<div><div>Cancer, a highly deadly disease, necessitates safe, cost-effective, and readily accessible treatments to mitigate its impact. Theabrownin (THBR), a polyphenolic pigment found in Pu-erh tea, has garnered attention for its potential benefits in memory, liver health, and inflammation control. By observing different biological activities of THBR, recently researchers have unveiled THBR’s promising anticancer properties across various human cancer types. By examining existing studies, it is evident that THBR demonstrates substantial potential in inhibiting cell proliferation and reducing tumour size with minimal harm to normal cells. These effects are achieved through the modulation of key molecular markers such as Bcl-2, Bax, various Caspases, Poly (ADP-ribose) polymerase cleavage (Cl-PARP), and zinc finger E box binding homeobox 1 (ZEB 1). This review aims to provide in-depth insights into THBR’s role in cancer research. This review also elucidates the underlying anticancer mechanisms of THBR, offering promise as a novel anticancer drug to alleviate the global cancer burden.</div></div>","PeriodicalId":18990,"journal":{"name":"Natural Product Research","volume":"39 4","pages":"Pages 817-833"},"PeriodicalIF":1.9000,"publicationDate":"2025-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Theabrownin: a dietary nutraceutical with diverse anticancer mechanisms\",\"authors\":\"Muhammad Faisal Maqbool , Sameena Gul , Muhammad Ishaq , Amara Maryam , Muhammad Khan , Hafiz Abdullah Shakir , Muhammad Irfan , Yongming Li , Tonghui Ma\",\"doi\":\"10.1080/14786419.2024.2306917\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Cancer, a highly deadly disease, necessitates safe, cost-effective, and readily accessible treatments to mitigate its impact. Theabrownin (THBR), a polyphenolic pigment found in Pu-erh tea, has garnered attention for its potential benefits in memory, liver health, and inflammation control. By observing different biological activities of THBR, recently researchers have unveiled THBR’s promising anticancer properties across various human cancer types. By examining existing studies, it is evident that THBR demonstrates substantial potential in inhibiting cell proliferation and reducing tumour size with minimal harm to normal cells. These effects are achieved through the modulation of key molecular markers such as Bcl-2, Bax, various Caspases, Poly (ADP-ribose) polymerase cleavage (Cl-PARP), and zinc finger E box binding homeobox 1 (ZEB 1). This review aims to provide in-depth insights into THBR’s role in cancer research. This review also elucidates the underlying anticancer mechanisms of THBR, offering promise as a novel anticancer drug to alleviate the global cancer burden.</div></div>\",\"PeriodicalId\":18990,\"journal\":{\"name\":\"Natural Product Research\",\"volume\":\"39 4\",\"pages\":\"Pages 817-833\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2025-02-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Natural Product Research\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/org/science/article/pii/S1478641924000378\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Natural Product Research","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/org/science/article/pii/S1478641924000378","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
Theabrownin: a dietary nutraceutical with diverse anticancer mechanisms
Cancer, a highly deadly disease, necessitates safe, cost-effective, and readily accessible treatments to mitigate its impact. Theabrownin (THBR), a polyphenolic pigment found in Pu-erh tea, has garnered attention for its potential benefits in memory, liver health, and inflammation control. By observing different biological activities of THBR, recently researchers have unveiled THBR’s promising anticancer properties across various human cancer types. By examining existing studies, it is evident that THBR demonstrates substantial potential in inhibiting cell proliferation and reducing tumour size with minimal harm to normal cells. These effects are achieved through the modulation of key molecular markers such as Bcl-2, Bax, various Caspases, Poly (ADP-ribose) polymerase cleavage (Cl-PARP), and zinc finger E box binding homeobox 1 (ZEB 1). This review aims to provide in-depth insights into THBR’s role in cancer research. This review also elucidates the underlying anticancer mechanisms of THBR, offering promise as a novel anticancer drug to alleviate the global cancer burden.
期刊介绍:
The aim of Natural Product Research is to publish important contributions in the field of natural product chemistry. The journal covers all aspects of research in the chemistry and biochemistry of naturally occurring compounds.
The communications include coverage of work on natural substances of land and sea and of plants, microbes and animals. Discussions of structure elucidation, synthesis and experimental biosynthesis of natural products as well as developments of methods in these areas are welcomed in the journal. Finally, research papers in fields on the chemistry-biology boundary, eg. fermentation chemistry, plant tissue culture investigations etc., are accepted into the journal.
Natural Product Research issues will be subtitled either ""Part A - Synthesis and Structure"" or ""Part B - Bioactive Natural Products"". for details on this , see the forthcoming articles section.
All manuscript submissions are subject to initial appraisal by the Editor, and, if found suitable for further consideration, to peer review by independent, anonymous expert referees. All peer review is single blind and submission is online via ScholarOne Manuscripts.