关于 COVID-19 的有效药用植物天然化合物的综述。

IF 1.9 3区 化学 Q3 CHEMISTRY, APPLIED Natural Product Research Pub Date : 2025-02-16 DOI:10.1080/14786419.2024.2309322
Saghar Ketebchi , Maryam Papari Moghadamfard
{"title":"关于 COVID-19 的有效药用植物天然化合物的综述。","authors":"Saghar Ketebchi ,&nbsp;Maryam Papari Moghadamfard","doi":"10.1080/14786419.2024.2309322","DOIUrl":null,"url":null,"abstract":"<div><div>In this review out of 300 selected articles 70 articles were evaluated, and the most significant compounds impacting COVID-19 and their mechanism of action were introduced. The compounds belong to four categories as follow: Phenolic, Flavonoid, Terpenoid, and Alkaloid compounds. In the phenol groups, the most effective compounds are scutellarin (suppressor of COVID-19 virus), thymol and carvacrol (the most inhibitory effect on COVID-19 virus), in the flavonoid groups, hesperdin (a strong inhibitor on COVID-19), in the terpenoids, methyl tanshinonate and sojil COVID-19 inhibitory effect) and 1,8-cineol (COVID-19 inhibitory effect) and in the last group, niglidine and quinoline alkaloid compounds (COVID-19 inhibitory effect) have been identified and introduced. These compounds have shown promising results due to their structure and effective mechanisms on COVID-19, so it can be an idea for researchers in this field to try to produce drugs by using natural compounds against the COVID-19 and Corona viruses.</div></div>","PeriodicalId":18990,"journal":{"name":"Natural Product Research","volume":"39 4","pages":"Pages 834-847"},"PeriodicalIF":1.9000,"publicationDate":"2025-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A review on the effective natural compounds of medicinal plants on the COVID-19\",\"authors\":\"Saghar Ketebchi ,&nbsp;Maryam Papari Moghadamfard\",\"doi\":\"10.1080/14786419.2024.2309322\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this review out of 300 selected articles 70 articles were evaluated, and the most significant compounds impacting COVID-19 and their mechanism of action were introduced. The compounds belong to four categories as follow: Phenolic, Flavonoid, Terpenoid, and Alkaloid compounds. In the phenol groups, the most effective compounds are scutellarin (suppressor of COVID-19 virus), thymol and carvacrol (the most inhibitory effect on COVID-19 virus), in the flavonoid groups, hesperdin (a strong inhibitor on COVID-19), in the terpenoids, methyl tanshinonate and sojil COVID-19 inhibitory effect) and 1,8-cineol (COVID-19 inhibitory effect) and in the last group, niglidine and quinoline alkaloid compounds (COVID-19 inhibitory effect) have been identified and introduced. These compounds have shown promising results due to their structure and effective mechanisms on COVID-19, so it can be an idea for researchers in this field to try to produce drugs by using natural compounds against the COVID-19 and Corona viruses.</div></div>\",\"PeriodicalId\":18990,\"journal\":{\"name\":\"Natural Product Research\",\"volume\":\"39 4\",\"pages\":\"Pages 834-847\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2025-02-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Natural Product Research\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/org/science/article/pii/S1478641924000706\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Natural Product Research","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/org/science/article/pii/S1478641924000706","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

本综述从 300 篇精选文章中评估了 70 篇,并介绍了对 COVID-19 影响最大的化合物及其作用机制。这些化合物分为以下四类:酚类化合物、类黄酮化合物、三萜类化合物和生物碱化合物。在酚类化合物中,最有效的化合物是黄芩苷(COVID-19 病毒的抑制剂)、百里酚和香芹酚(对 COVID-19 病毒的抑制作用最强);在类黄酮化合物中,是橙皮甙(对 COVID-19 有很强的抑制作用)、在萜类化合物中,发现并引入了丹参酮酸甲酯和苏木醇(对 COVID-19 病毒有抑制作用)和 1,8-松油醇(对 COVID-19 病毒有抑制作用);在最后一类化合物中,发现并引入了奈格里定和喹啉生物碱化合物(对 COVID-19 病毒有抑制作用)。由于这些化合物的结构和对 COVID-19 的有效机制,它们显示出了良好的效果,因此该领域的研究人员可以尝试利用天然化合物来生产针对 COVID-19 和科罗娜病毒的药物。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A review on the effective natural compounds of medicinal plants on the COVID-19
In this review out of 300 selected articles 70 articles were evaluated, and the most significant compounds impacting COVID-19 and their mechanism of action were introduced. The compounds belong to four categories as follow: Phenolic, Flavonoid, Terpenoid, and Alkaloid compounds. In the phenol groups, the most effective compounds are scutellarin (suppressor of COVID-19 virus), thymol and carvacrol (the most inhibitory effect on COVID-19 virus), in the flavonoid groups, hesperdin (a strong inhibitor on COVID-19), in the terpenoids, methyl tanshinonate and sojil COVID-19 inhibitory effect) and 1,8-cineol (COVID-19 inhibitory effect) and in the last group, niglidine and quinoline alkaloid compounds (COVID-19 inhibitory effect) have been identified and introduced. These compounds have shown promising results due to their structure and effective mechanisms on COVID-19, so it can be an idea for researchers in this field to try to produce drugs by using natural compounds against the COVID-19 and Corona viruses.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Natural Product Research
Natural Product Research 化学-医药化学
CiteScore
5.10
自引率
9.10%
发文量
605
审稿时长
2.1 months
期刊介绍: The aim of Natural Product Research is to publish important contributions in the field of natural product chemistry. The journal covers all aspects of research in the chemistry and biochemistry of naturally occurring compounds. The communications include coverage of work on natural substances of land and sea and of plants, microbes and animals. Discussions of structure elucidation, synthesis and experimental biosynthesis of natural products as well as developments of methods in these areas are welcomed in the journal. Finally, research papers in fields on the chemistry-biology boundary, eg. fermentation chemistry, plant tissue culture investigations etc., are accepted into the journal. Natural Product Research issues will be subtitled either ""Part A - Synthesis and Structure"" or ""Part B - Bioactive Natural Products"". for details on this , see the forthcoming articles section. All manuscript submissions are subject to initial appraisal by the Editor, and, if found suitable for further consideration, to peer review by independent, anonymous expert referees. All peer review is single blind and submission is online via ScholarOne Manuscripts.
期刊最新文献
Phenolic constituents from the roots of Strobilanthes sarcorrhiza C. Ling and their bioactivity. Therapeutic potential of Brazilian green propolis and oregano (Origanum vulgare) extracts in collagen hydrogel for pressure ulcer repair: an experimental study in an animal model. 1H NMR-based metabolomics study of the lipid profile of argan oil and investigation of possible adulterations in the market of this valuable herbal oil. Integrative dereplication and molecular networking reveal potential antimicrobial agents in Kielmeyera coriacea Mart. Two new flavonoids with antimicrobial activity from the roots of Byttneria aspera Colebr. ex Wall (Malvaceae)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1