{"title":"嵌入生物分子域的异质混合半导体电子器件原型","authors":"M. A. Baranov, E. K. Karseeva, O. Yu. Tsybin","doi":"10.1134/s1063739723700725","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p>A macromolecular system embedded in a semiconductor microelectronic device is considered as a biomolecular nano- or micro-sized domain that performs the functions of converting acoustic and electromagnetic signals. The issues of the choice of substances, the dynamic and structural-functional state of the domain, and the physical foundations of its interaction with matrix elements are discussed. The process of excitation of forced oscillations in amino acid molecules (for example, glycine, tryptophan, and diphenyl-L-alanine) under the influence of short (10–100 ps) packets of electrical signals in the IR range with a frequency in the range of 1–125 THz is studied by the method of supercomputer nonequilibrium modeling of molecular dynamics. The acoustoelectric interpretation of oscillation generation is carried out using a unified equivalent circuit of the peptide group. Examples of prototypes of heterogeneous devices being developed are given. It is concluded that embedded biomolecular domains, presented as a multifunctional element base, are promising for signal conversion in hybrid microelectronics.</p>","PeriodicalId":21534,"journal":{"name":"Russian Microelectronics","volume":"8 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Prototypes of Devices for Heterogeneous Hybrid Semiconductor Electronics with an Embedded Biomolecular Domain\",\"authors\":\"M. A. Baranov, E. K. Karseeva, O. Yu. Tsybin\",\"doi\":\"10.1134/s1063739723700725\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3 data-test=\\\"abstract-sub-heading\\\">Abstract</h3><p>A macromolecular system embedded in a semiconductor microelectronic device is considered as a biomolecular nano- or micro-sized domain that performs the functions of converting acoustic and electromagnetic signals. The issues of the choice of substances, the dynamic and structural-functional state of the domain, and the physical foundations of its interaction with matrix elements are discussed. The process of excitation of forced oscillations in amino acid molecules (for example, glycine, tryptophan, and diphenyl-L-alanine) under the influence of short (10–100 ps) packets of electrical signals in the IR range with a frequency in the range of 1–125 THz is studied by the method of supercomputer nonequilibrium modeling of molecular dynamics. The acoustoelectric interpretation of oscillation generation is carried out using a unified equivalent circuit of the peptide group. Examples of prototypes of heterogeneous devices being developed are given. It is concluded that embedded biomolecular domains, presented as a multifunctional element base, are promising for signal conversion in hybrid microelectronics.</p>\",\"PeriodicalId\":21534,\"journal\":{\"name\":\"Russian Microelectronics\",\"volume\":\"8 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-02-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Russian Microelectronics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1134/s1063739723700725\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Russian Microelectronics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1134/s1063739723700725","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Engineering","Score":null,"Total":0}
Prototypes of Devices for Heterogeneous Hybrid Semiconductor Electronics with an Embedded Biomolecular Domain
Abstract
A macromolecular system embedded in a semiconductor microelectronic device is considered as a biomolecular nano- or micro-sized domain that performs the functions of converting acoustic and electromagnetic signals. The issues of the choice of substances, the dynamic and structural-functional state of the domain, and the physical foundations of its interaction with matrix elements are discussed. The process of excitation of forced oscillations in amino acid molecules (for example, glycine, tryptophan, and diphenyl-L-alanine) under the influence of short (10–100 ps) packets of electrical signals in the IR range with a frequency in the range of 1–125 THz is studied by the method of supercomputer nonequilibrium modeling of molecular dynamics. The acoustoelectric interpretation of oscillation generation is carried out using a unified equivalent circuit of the peptide group. Examples of prototypes of heterogeneous devices being developed are given. It is concluded that embedded biomolecular domains, presented as a multifunctional element base, are promising for signal conversion in hybrid microelectronics.
期刊介绍:
Russian Microelectronics covers physical, technological, and some VLSI and ULSI circuit-technical aspects of microelectronics and nanoelectronics; it informs the reader of new trends in submicron optical, x-ray, electron, and ion-beam lithography technology; dry processing techniques, etching, doping; and deposition and planarization technology. Significant space is devoted to problems arising in the application of proton, electron, and ion beams, plasma, etc. Consideration is given to new equipment, including cluster tools and control in situ and submicron CMOS, bipolar, and BICMOS technologies. The journal publishes papers addressing problems of molecular beam epitaxy and related processes; heterojunction devices and integrated circuits; the technology and devices of nanoelectronics; and the fabrication of nanometer scale devices, including new device structures, quantum-effect devices, and superconducting devices. The reader will find papers containing news of the diagnostics of surfaces and microelectronic structures, the modeling of technological processes and devices in micro- and nanoelectronics, including nanotransistors, and solid state qubits.