100 °C 蒸汽暴露后 PMMA 钝化铟镓锌氧化物薄膜晶体管的偏压稳定性

IF 1.4 4区 物理与天体物理 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC Solid-state Electronics Pub Date : 2024-02-28 DOI:10.1016/j.sse.2024.108893
Yuyun Chen , Guodong Xu , Yunpeng Yu , Yi Shen
{"title":"100 °C 蒸汽暴露后 PMMA 钝化铟镓锌氧化物薄膜晶体管的偏压稳定性","authors":"Yuyun Chen ,&nbsp;Guodong Xu ,&nbsp;Yunpeng Yu ,&nbsp;Yi Shen","doi":"10.1016/j.sse.2024.108893","DOIUrl":null,"url":null,"abstract":"<div><p>Bias stress stabilities of the polymethyl methacrylate (PMMA)-passivated IGZO thin-film transistors (TFTs) after being exposed in a normal and harsh (100 °C steam) environment were studied, in order to comprehensively evaluate protection effects of PMMA. In a normal environment, the PMMA-passivated TFTs exhibited normal switching characteristics and electrical stabilities. However, the switching characteristics and bias stress stabilities were changed after being exposed on 100 °C steam. There were negative V<sub>th</sub> shifts on the transfer curves of the steam-exposed IGZO TFTs. Our XPS analysis revealed that the negative ΔV<sub>th</sub> was related to the steam-induced H<sub>2</sub>O molecules throughout the IGZO films, which acted as electron donors to introduce more electrons in the front channel. Under PBS, the steam-exposed IGZO TFTs showed an abnormal negative V<sub>th</sub> shift while the un-exposed IGZO TFTs showed negligible V<sub>th</sub> shift. This abnormality was ascribed to the electrons released from steam-induced H<sub>2</sub>O molecules, which render the conductive path more easily opened. Under NBS, the steam-exposed IGZO TFT presented larger negative V<sub>th</sub> shift than the un-exposed TFT. This result was interpreted in terms of the steam-induced donor states (H<sub>2</sub>O molecules) near or at channel/insulator interface. Under PBTS and NBTS, the changes in V<sub>th</sub> for steam-exposed TFTs were similar to those for un-exposed TFTs. Such a similarity indicates that steam exposure had no effects on NBTS and PBTS stabilities. It was understood in terms that the steam-induced H<sub>2</sub>O<sup>+</sup> recombined with the electrons released from the steam-induced H<sub>2</sub>O molecules under bias stress, forming H<sub>2</sub>O to compensate the thermally-induced H<sub>2</sub>O adsorption. Our results suggest that one-micron-thick PMMA passivation layer enabled to protect IGZO TFTs from H<sub>2</sub>O in a normal environment, but it provided inadequate protection in a harsh environment. Therefore, a thicker PMMA passivation layer should be considered.</p></div>","PeriodicalId":21909,"journal":{"name":"Solid-state Electronics","volume":"215 ","pages":"Article 108893"},"PeriodicalIF":1.4000,"publicationDate":"2024-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bias stress stabilities of PMMA-passivated indium-gallium-zinc-oxide thin-film transistors after 100 °C steam exposure\",\"authors\":\"Yuyun Chen ,&nbsp;Guodong Xu ,&nbsp;Yunpeng Yu ,&nbsp;Yi Shen\",\"doi\":\"10.1016/j.sse.2024.108893\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Bias stress stabilities of the polymethyl methacrylate (PMMA)-passivated IGZO thin-film transistors (TFTs) after being exposed in a normal and harsh (100 °C steam) environment were studied, in order to comprehensively evaluate protection effects of PMMA. In a normal environment, the PMMA-passivated TFTs exhibited normal switching characteristics and electrical stabilities. However, the switching characteristics and bias stress stabilities were changed after being exposed on 100 °C steam. There were negative V<sub>th</sub> shifts on the transfer curves of the steam-exposed IGZO TFTs. Our XPS analysis revealed that the negative ΔV<sub>th</sub> was related to the steam-induced H<sub>2</sub>O molecules throughout the IGZO films, which acted as electron donors to introduce more electrons in the front channel. Under PBS, the steam-exposed IGZO TFTs showed an abnormal negative V<sub>th</sub> shift while the un-exposed IGZO TFTs showed negligible V<sub>th</sub> shift. This abnormality was ascribed to the electrons released from steam-induced H<sub>2</sub>O molecules, which render the conductive path more easily opened. Under NBS, the steam-exposed IGZO TFT presented larger negative V<sub>th</sub> shift than the un-exposed TFT. This result was interpreted in terms of the steam-induced donor states (H<sub>2</sub>O molecules) near or at channel/insulator interface. Under PBTS and NBTS, the changes in V<sub>th</sub> for steam-exposed TFTs were similar to those for un-exposed TFTs. Such a similarity indicates that steam exposure had no effects on NBTS and PBTS stabilities. It was understood in terms that the steam-induced H<sub>2</sub>O<sup>+</sup> recombined with the electrons released from the steam-induced H<sub>2</sub>O molecules under bias stress, forming H<sub>2</sub>O to compensate the thermally-induced H<sub>2</sub>O adsorption. Our results suggest that one-micron-thick PMMA passivation layer enabled to protect IGZO TFTs from H<sub>2</sub>O in a normal environment, but it provided inadequate protection in a harsh environment. Therefore, a thicker PMMA passivation layer should be considered.</p></div>\",\"PeriodicalId\":21909,\"journal\":{\"name\":\"Solid-state Electronics\",\"volume\":\"215 \",\"pages\":\"Article 108893\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2024-02-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Solid-state Electronics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S003811012400042X\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solid-state Electronics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S003811012400042X","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

为了全面评估聚甲基丙烯酸甲酯(PMMA)的保护作用,研究了暴露在正常和恶劣(100 °C蒸汽)环境中的聚甲基丙烯酸甲酯(PMMA)钝化 IGZO 薄膜晶体管(TFT)的偏压稳定性。在正常环境下,经过 PMMA 钝化处理的 TFT 具有正常的开关特性和电气稳定性。然而,暴露在 100 °C 蒸汽中后,开关特性和偏压应力稳定性发生了变化。暴露在蒸汽中的 IGZO TFT 的转移曲线出现了负 V 移位。我们的 XPS 分析表明,负 ΔV 与整个 IGZO 薄膜中蒸汽诱导的 HO 分子有关,这些分子作为电子供体在前沟道中引入了更多电子。在 PBS 条件下,蒸汽暴露的 IGZO TFT 显示出异常的负 V 偏移,而未暴露的 IGZO TFT 的 V 偏移可以忽略不计。这种异常是由于蒸汽诱导的 HO 分子释放出电子,使导电路径更容易打开。在 NBS 条件下,蒸汽暴露的 IGZO TFT 比未暴露的 TFT 显示出更大的负 V 偏移。这一结果可以从沟道/绝缘体界面附近或界面上的蒸汽诱导供体态(HO 分子)来解释。在 PBTS 和 NBTS 条件下,蒸汽暴露 TFT 的 V 值变化与未暴露 TFT 相似。这种相似性表明,蒸汽暴露对 NBTS 和 PBTS 的稳定性没有影响。据理解,蒸汽诱导的 HO 与蒸汽诱导的 HO 分子在偏压应力下释放的电子重新结合,形成 HO 以补偿热诱导的 HO 吸附。我们的研究结果表明,在正常环境下,一微米厚的 PMMA 钝化层能够保护 IGZO TFT 免受 HO 的影响,但在恶劣环境下,其保护作用就显得不足了。因此,应考虑使用更厚的 PMMA 钝化层。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Bias stress stabilities of PMMA-passivated indium-gallium-zinc-oxide thin-film transistors after 100 °C steam exposure

Bias stress stabilities of the polymethyl methacrylate (PMMA)-passivated IGZO thin-film transistors (TFTs) after being exposed in a normal and harsh (100 °C steam) environment were studied, in order to comprehensively evaluate protection effects of PMMA. In a normal environment, the PMMA-passivated TFTs exhibited normal switching characteristics and electrical stabilities. However, the switching characteristics and bias stress stabilities were changed after being exposed on 100 °C steam. There were negative Vth shifts on the transfer curves of the steam-exposed IGZO TFTs. Our XPS analysis revealed that the negative ΔVth was related to the steam-induced H2O molecules throughout the IGZO films, which acted as electron donors to introduce more electrons in the front channel. Under PBS, the steam-exposed IGZO TFTs showed an abnormal negative Vth shift while the un-exposed IGZO TFTs showed negligible Vth shift. This abnormality was ascribed to the electrons released from steam-induced H2O molecules, which render the conductive path more easily opened. Under NBS, the steam-exposed IGZO TFT presented larger negative Vth shift than the un-exposed TFT. This result was interpreted in terms of the steam-induced donor states (H2O molecules) near or at channel/insulator interface. Under PBTS and NBTS, the changes in Vth for steam-exposed TFTs were similar to those for un-exposed TFTs. Such a similarity indicates that steam exposure had no effects on NBTS and PBTS stabilities. It was understood in terms that the steam-induced H2O+ recombined with the electrons released from the steam-induced H2O molecules under bias stress, forming H2O to compensate the thermally-induced H2O adsorption. Our results suggest that one-micron-thick PMMA passivation layer enabled to protect IGZO TFTs from H2O in a normal environment, but it provided inadequate protection in a harsh environment. Therefore, a thicker PMMA passivation layer should be considered.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Solid-state Electronics
Solid-state Electronics 物理-工程:电子与电气
CiteScore
3.00
自引率
5.90%
发文量
212
审稿时长
3 months
期刊介绍: It is the aim of this journal to bring together in one publication outstanding papers reporting new and original work in the following areas: (1) applications of solid-state physics and technology to electronics and optoelectronics, including theory and device design; (2) optical, electrical, morphological characterization techniques and parameter extraction of devices; (3) fabrication of semiconductor devices, and also device-related materials growth, measurement and evaluation; (4) the physics and modeling of submicron and nanoscale microelectronic and optoelectronic devices, including processing, measurement, and performance evaluation; (5) applications of numerical methods to the modeling and simulation of solid-state devices and processes; and (6) nanoscale electronic and optoelectronic devices, photovoltaics, sensors, and MEMS based on semiconductor and alternative electronic materials; (7) synthesis and electrooptical properties of materials for novel devices.
期刊最新文献
Temperature influence on experimental analog behavior of MISHEMTs A novel method used to prepare PN junction by plasmon generated under pulsed laser irradiation on silicon chip Achieving 15.75% efficiency in solar cells: Advanced surface engineering using Tetra-Tert-Butyl-Tercarbazol-Benzonitrile and organic layer integration in n-type silicon wafer and hybrid Planar-Si systems Influence of Ag-Bi2S3 nanocomposites for highly sensitive and selective Cl2 gas sensors: Synthesis, characterization, and gas sensing performance Editorial Board
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1