利用 TRNSYS 软件评估农村地区以消费者为基础的能源系统

Aqsa Rana , Gyula Gróf
{"title":"利用 TRNSYS 软件评估农村地区以消费者为基础的能源系统","authors":"Aqsa Rana ,&nbsp;Gyula Gróf","doi":"10.1016/j.cles.2024.100110","DOIUrl":null,"url":null,"abstract":"<div><p>The prosumers are the new performers progressing towards a low-carbon future. Renewable-based power generation is essential, even in rural areas, to pave a path toward sustainable development. This study establishes a simulation model for two identical residential buildings to assess the prosumer's impact on future local (standalone) energy systems. According to the climate condition of Pakistan, the technical, economic, and environmental performance of the standalone system is evaluated using TRNSYS software. Assumptions and modeling of different components, photovoltaic (PV) panels, and batteries are also discussed. This study provides the starting point of a real-time framework of energy trade between two rural houses connected with a common microgrid. Both houses are medium-sized family houses with almost identical electricity demands. One house has PV mounted on the rooftop, with the battery as an optimal energy storage option. Attention is given to peak demand management and surplus energy during enough production hours. A dynamic energy management approach between two buildings is proposed based on TRNSYS and blockchain. Simulation results show that the real-time implementation of local energy production and energy trading at the household level facilitates achieving the dual benefits of reducing consumer costs and maximizing self-consumption.</p></div>","PeriodicalId":100252,"journal":{"name":"Cleaner Energy Systems","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-02-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772783124000049/pdfft?md5=ee62cda53e96a133fef39958d7600b1a&pid=1-s2.0-S2772783124000049-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Assessment of prosumer-based energy system for rural areas by using TRNSYS software\",\"authors\":\"Aqsa Rana ,&nbsp;Gyula Gróf\",\"doi\":\"10.1016/j.cles.2024.100110\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The prosumers are the new performers progressing towards a low-carbon future. Renewable-based power generation is essential, even in rural areas, to pave a path toward sustainable development. This study establishes a simulation model for two identical residential buildings to assess the prosumer's impact on future local (standalone) energy systems. According to the climate condition of Pakistan, the technical, economic, and environmental performance of the standalone system is evaluated using TRNSYS software. Assumptions and modeling of different components, photovoltaic (PV) panels, and batteries are also discussed. This study provides the starting point of a real-time framework of energy trade between two rural houses connected with a common microgrid. Both houses are medium-sized family houses with almost identical electricity demands. One house has PV mounted on the rooftop, with the battery as an optimal energy storage option. Attention is given to peak demand management and surplus energy during enough production hours. A dynamic energy management approach between two buildings is proposed based on TRNSYS and blockchain. Simulation results show that the real-time implementation of local energy production and energy trading at the household level facilitates achieving the dual benefits of reducing consumer costs and maximizing self-consumption.</p></div>\",\"PeriodicalId\":100252,\"journal\":{\"name\":\"Cleaner Energy Systems\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-02-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2772783124000049/pdfft?md5=ee62cda53e96a133fef39958d7600b1a&pid=1-s2.0-S2772783124000049-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cleaner Energy Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2772783124000049\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cleaner Energy Systems","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772783124000049","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

专业消费者是迈向低碳未来的新力量。即使在农村地区,可再生能源发电对铺平可持续发展之路也至关重要。本研究为两栋相同的住宅楼建立了一个模拟模型,以评估消费者对未来本地(独立)能源系统的影响。根据巴基斯坦的气候条件,使用 TRNSYS 软件对独立系统的技术、经济和环境性能进行了评估。此外,还讨论了不同组件、光伏(PV)板和电池的假设和建模。这项研究提供了两个农村房屋之间能源交易实时框架的起点,这两个房屋都与一个公共微电网相连。两栋房屋都是中型家庭住宅,电力需求几乎相同。其中一栋房屋的屋顶安装了光伏发电装置,并将电池作为最佳储能方案。在生产时间充足的情况下,关注高峰需求管理和剩余能源。基于 TRNSYS 和区块链,提出了两栋楼之间的动态能源管理方法。仿真结果表明,在家庭层面实时实现本地能源生产和能源交易有助于实现降低消费者成本和最大化自我消费的双重效益。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Assessment of prosumer-based energy system for rural areas by using TRNSYS software

The prosumers are the new performers progressing towards a low-carbon future. Renewable-based power generation is essential, even in rural areas, to pave a path toward sustainable development. This study establishes a simulation model for two identical residential buildings to assess the prosumer's impact on future local (standalone) energy systems. According to the climate condition of Pakistan, the technical, economic, and environmental performance of the standalone system is evaluated using TRNSYS software. Assumptions and modeling of different components, photovoltaic (PV) panels, and batteries are also discussed. This study provides the starting point of a real-time framework of energy trade between two rural houses connected with a common microgrid. Both houses are medium-sized family houses with almost identical electricity demands. One house has PV mounted on the rooftop, with the battery as an optimal energy storage option. Attention is given to peak demand management and surplus energy during enough production hours. A dynamic energy management approach between two buildings is proposed based on TRNSYS and blockchain. Simulation results show that the real-time implementation of local energy production and energy trading at the household level facilitates achieving the dual benefits of reducing consumer costs and maximizing self-consumption.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.00
自引率
0.00%
发文量
0
期刊最新文献
Simulation of a system to simultaneously recover CO2 and sweet carbon-neutral natural gas from wet natural gas: A delve into process inputs and units performances Optimizing a hybrid wind-solar-biomass system with battery and hydrogen storage using generic algorithm-particle swarm optimization for performance assessment Design and implementation of a control system for multifunctional applications of a Battery Energy Storage System (BESS) in a power system network Optimizing textile dyeing and finishing for improved energy efficiency and sustainability in fleece knitted fabrics Techno economic study of floating solar photovoltaic project in Indonesia using RETscreen
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1