Shahrokh Nemattabar , Mohammad Mosleh , Majid Haghparast , Mohammad Kheyrandish
{"title":"推进纳米级计算:量子点蜂窝自动机中的高效可逆 ALU","authors":"Shahrokh Nemattabar , Mohammad Mosleh , Majid Haghparast , Mohammad Kheyrandish","doi":"10.1016/j.nancom.2024.100498","DOIUrl":null,"url":null,"abstract":"<div><p>This paper presents a significant contribution to the field of nanoscale computing by proposing an innovative reversible Arithmetic and Logic Unit (ALU) implemented in Quantum-Dot Cellular Automata (QCA). Reversible logic and QCA technology offer promising alternatives to conventional CMOS technology, addressing the challenges of operating at nanoscale dimensions. The primary objective is to develop a highly efficient ALU capable of performing 26 distinct arithmetic and logical operations. The ALU design is based on a novel reversible full adder-subtractor optimized for minimal quantum cost, which is crucial for energy-efficient quantum computation. The evaluation encompasses various criteria related to reversibility, such as gate count, number of constant inputs, number of garbage outputs, and quantum cost. QCA-specific criteria, including cell count, occupied area, and clock cycles, are also considered. The outcomes of this research contribute to the advancement of cell-efficient nanoscale computing, with implications for quantum computation, emerging technologies, and future integrated circuit design.</p></div>","PeriodicalId":54336,"journal":{"name":"Nano Communication Networks","volume":"40 ","pages":"Article 100498"},"PeriodicalIF":2.9000,"publicationDate":"2024-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Advancing nanoscale computing: Efficient reversible ALU in quantum-dot cellular automata\",\"authors\":\"Shahrokh Nemattabar , Mohammad Mosleh , Majid Haghparast , Mohammad Kheyrandish\",\"doi\":\"10.1016/j.nancom.2024.100498\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This paper presents a significant contribution to the field of nanoscale computing by proposing an innovative reversible Arithmetic and Logic Unit (ALU) implemented in Quantum-Dot Cellular Automata (QCA). Reversible logic and QCA technology offer promising alternatives to conventional CMOS technology, addressing the challenges of operating at nanoscale dimensions. The primary objective is to develop a highly efficient ALU capable of performing 26 distinct arithmetic and logical operations. The ALU design is based on a novel reversible full adder-subtractor optimized for minimal quantum cost, which is crucial for energy-efficient quantum computation. The evaluation encompasses various criteria related to reversibility, such as gate count, number of constant inputs, number of garbage outputs, and quantum cost. QCA-specific criteria, including cell count, occupied area, and clock cycles, are also considered. The outcomes of this research contribute to the advancement of cell-efficient nanoscale computing, with implications for quantum computation, emerging technologies, and future integrated circuit design.</p></div>\",\"PeriodicalId\":54336,\"journal\":{\"name\":\"Nano Communication Networks\",\"volume\":\"40 \",\"pages\":\"Article 100498\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-03-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nano Communication Networks\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1878778924000048\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Communication Networks","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1878778924000048","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Advancing nanoscale computing: Efficient reversible ALU in quantum-dot cellular automata
This paper presents a significant contribution to the field of nanoscale computing by proposing an innovative reversible Arithmetic and Logic Unit (ALU) implemented in Quantum-Dot Cellular Automata (QCA). Reversible logic and QCA technology offer promising alternatives to conventional CMOS technology, addressing the challenges of operating at nanoscale dimensions. The primary objective is to develop a highly efficient ALU capable of performing 26 distinct arithmetic and logical operations. The ALU design is based on a novel reversible full adder-subtractor optimized for minimal quantum cost, which is crucial for energy-efficient quantum computation. The evaluation encompasses various criteria related to reversibility, such as gate count, number of constant inputs, number of garbage outputs, and quantum cost. QCA-specific criteria, including cell count, occupied area, and clock cycles, are also considered. The outcomes of this research contribute to the advancement of cell-efficient nanoscale computing, with implications for quantum computation, emerging technologies, and future integrated circuit design.
期刊介绍:
The Nano Communication Networks Journal is an international, archival and multi-disciplinary journal providing a publication vehicle for complete coverage of all topics of interest to those involved in all aspects of nanoscale communication and networking. Theoretical research contributions presenting new techniques, concepts or analyses; applied contributions reporting on experiences and experiments; and tutorial and survey manuscripts are published.
Nano Communication Networks is a part of the COMNET (Computer Networks) family of journals within Elsevier. The family of journals covers all aspects of networking except nanonetworking, which is the scope of this journal.