{"title":"用于 BSIM-CMG 紧凑型模型的单一神经网络全局 I-V 和 C-V 参数提取器","authors":"Jen-Hao Chen , Fredo Chavez , Chien-Ting Tung , Sourabh Khandelwal , Chenming Hu","doi":"10.1016/j.sse.2024.108898","DOIUrl":null,"url":null,"abstract":"<div><p>A global I-V and C-V BSIM-CMG parameter extraction methodology based on deep learning is proposed. 100 k training datasets were generated through Monte Carlo simulation varying 28 IV and CV model parameters in the industry-standard BSIM-CMG FinFET model. For each of the 100 k Monte Carlo-selected BSIM-CMG parameter dataset, the I<sub>D</sub>-V<sub>G</sub> and C<sub>GG</sub>-V<sub>G</sub> characteristics of seven Monte Carlo-selected gate lengths ranging from 14 nm to 110 nm were generated as the input to train the parameter extraction neural network. The neural network outputs for training are the 28 model parameters’ values. The neural network's capability to extract BSIM-CMG model parameters that accurately fit TCAD-generated I<sub>D</sub>-V<sub>G</sub> and C<sub>GG</sub>-V<sub>G</sub> data over a range of gate lengths was demonstrated. This marks the first time a deep learning compact model parameter extraction flow, employing a single neural network for both I-V and C-V parameters and for a range of gate length, is presented.</p></div>","PeriodicalId":21909,"journal":{"name":"Solid-state Electronics","volume":"216 ","pages":"Article 108898"},"PeriodicalIF":1.4000,"publicationDate":"2024-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A single neural network global I-V and C-V parameter extractor for BSIM-CMG compact model\",\"authors\":\"Jen-Hao Chen , Fredo Chavez , Chien-Ting Tung , Sourabh Khandelwal , Chenming Hu\",\"doi\":\"10.1016/j.sse.2024.108898\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>A global I-V and C-V BSIM-CMG parameter extraction methodology based on deep learning is proposed. 100 k training datasets were generated through Monte Carlo simulation varying 28 IV and CV model parameters in the industry-standard BSIM-CMG FinFET model. For each of the 100 k Monte Carlo-selected BSIM-CMG parameter dataset, the I<sub>D</sub>-V<sub>G</sub> and C<sub>GG</sub>-V<sub>G</sub> characteristics of seven Monte Carlo-selected gate lengths ranging from 14 nm to 110 nm were generated as the input to train the parameter extraction neural network. The neural network outputs for training are the 28 model parameters’ values. The neural network's capability to extract BSIM-CMG model parameters that accurately fit TCAD-generated I<sub>D</sub>-V<sub>G</sub> and C<sub>GG</sub>-V<sub>G</sub> data over a range of gate lengths was demonstrated. This marks the first time a deep learning compact model parameter extraction flow, employing a single neural network for both I-V and C-V parameters and for a range of gate length, is presented.</p></div>\",\"PeriodicalId\":21909,\"journal\":{\"name\":\"Solid-state Electronics\",\"volume\":\"216 \",\"pages\":\"Article 108898\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2024-03-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Solid-state Electronics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0038110124000479\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solid-state Electronics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0038110124000479","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
A single neural network global I-V and C-V parameter extractor for BSIM-CMG compact model
A global I-V and C-V BSIM-CMG parameter extraction methodology based on deep learning is proposed. 100 k training datasets were generated through Monte Carlo simulation varying 28 IV and CV model parameters in the industry-standard BSIM-CMG FinFET model. For each of the 100 k Monte Carlo-selected BSIM-CMG parameter dataset, the ID-VG and CGG-VG characteristics of seven Monte Carlo-selected gate lengths ranging from 14 nm to 110 nm were generated as the input to train the parameter extraction neural network. The neural network outputs for training are the 28 model parameters’ values. The neural network's capability to extract BSIM-CMG model parameters that accurately fit TCAD-generated ID-VG and CGG-VG data over a range of gate lengths was demonstrated. This marks the first time a deep learning compact model parameter extraction flow, employing a single neural network for both I-V and C-V parameters and for a range of gate length, is presented.
期刊介绍:
It is the aim of this journal to bring together in one publication outstanding papers reporting new and original work in the following areas: (1) applications of solid-state physics and technology to electronics and optoelectronics, including theory and device design; (2) optical, electrical, morphological characterization techniques and parameter extraction of devices; (3) fabrication of semiconductor devices, and also device-related materials growth, measurement and evaluation; (4) the physics and modeling of submicron and nanoscale microelectronic and optoelectronic devices, including processing, measurement, and performance evaluation; (5) applications of numerical methods to the modeling and simulation of solid-state devices and processes; and (6) nanoscale electronic and optoelectronic devices, photovoltaics, sensors, and MEMS based on semiconductor and alternative electronic materials; (7) synthesis and electrooptical properties of materials for novel devices.