长期气候变化对台湾附近与西南季风气流相关的台风降雨的影响:Mindulle(2004 年)和 Morakot(2009 年)

IF 2.2 4区 地球科学 Q3 METEOROLOGY & ATMOSPHERIC SCIENCES Asia-Pacific Journal of Atmospheric Sciences Pub Date : 2024-03-22 DOI:10.1007/s13143-023-00345-1
Chung-Chieh Wang, Li-Shan Tseng, Chien-Chang Huang, Pi-Yu Chuang, Nan-Chou Su, Cheng-Ta Chen, Shih-How Lo, Kazuhisa Tsuboki
{"title":"长期气候变化对台湾附近与西南季风气流相关的台风降雨的影响:Mindulle(2004 年)和 Morakot(2009 年)","authors":"Chung-Chieh Wang,&nbsp;Li-Shan Tseng,&nbsp;Chien-Chang Huang,&nbsp;Pi-Yu Chuang,&nbsp;Nan-Chou Su,&nbsp;Cheng-Ta Chen,&nbsp;Shih-How Lo,&nbsp;Kazuhisa Tsuboki","doi":"10.1007/s13143-023-00345-1","DOIUrl":null,"url":null,"abstract":"<div><p>Typhoons Morakot (2009) and Mindulle (2004) were two of the rainiest and most damaging typhoons to hit Taiwan on record, where both cases are associated with a strong low-level southwesterly monsoon flow. The moisture-rich southwesterly monsoon flow and the typhoon-induced northwesterly current usually converge on Taiwan’s Central Mountain Range to produce catastrophic rainfall. The two storms are simulated with a cloud-resolving model (CRM) using the pseudo-global-warming (PGW) methodology to assess the fraction of precipitation attributable to long-term climate change. For each storm, two scenarios are simulated and compared—the control run in present-day climate and the sensitivity test in a past environment four decades ago, where the climate-change signal (“deltas”) is computed using global reanalysis data as the difference between 1990–2009 and 1950–1969. Being realistically reproduced by the CRM at a 3-km grid size in the control run, both typhoons progress in the sensitivity test with highly similar evolution to their present-day counterpart, even though the background in the sensitivity run is slightly cooler and drier than the present. Under the current climate, Morakot and Mindulle produce more rainfall by about 5 mm per day within 300–400 km from the center during their lifespan (equal to an increase of ~4–8%) compared to their counterparts in past climates. Such results are in close agreement with previous studies, and the shift in mean daily rainfall is tested as statistically significant at a confidence level of 99.5%. The water budget analysis shows that the increased rainfall from past to present climate is accounted for mainly by the low-level convergence of moisture associated with a more vigorous secondary circulation and a higher precipitable water amount.</p></div>","PeriodicalId":8556,"journal":{"name":"Asia-Pacific Journal of Atmospheric Sciences","volume":"60 3","pages":"345 - 364"},"PeriodicalIF":2.2000,"publicationDate":"2024-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effects of Long-term Climate Change on Typhoon Rainfall Associated with Southwesterly Monsoon Flow near Taiwan: Mindulle (2004) and Morakot (2009)\",\"authors\":\"Chung-Chieh Wang,&nbsp;Li-Shan Tseng,&nbsp;Chien-Chang Huang,&nbsp;Pi-Yu Chuang,&nbsp;Nan-Chou Su,&nbsp;Cheng-Ta Chen,&nbsp;Shih-How Lo,&nbsp;Kazuhisa Tsuboki\",\"doi\":\"10.1007/s13143-023-00345-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Typhoons Morakot (2009) and Mindulle (2004) were two of the rainiest and most damaging typhoons to hit Taiwan on record, where both cases are associated with a strong low-level southwesterly monsoon flow. The moisture-rich southwesterly monsoon flow and the typhoon-induced northwesterly current usually converge on Taiwan’s Central Mountain Range to produce catastrophic rainfall. The two storms are simulated with a cloud-resolving model (CRM) using the pseudo-global-warming (PGW) methodology to assess the fraction of precipitation attributable to long-term climate change. For each storm, two scenarios are simulated and compared—the control run in present-day climate and the sensitivity test in a past environment four decades ago, where the climate-change signal (“deltas”) is computed using global reanalysis data as the difference between 1990–2009 and 1950–1969. Being realistically reproduced by the CRM at a 3-km grid size in the control run, both typhoons progress in the sensitivity test with highly similar evolution to their present-day counterpart, even though the background in the sensitivity run is slightly cooler and drier than the present. Under the current climate, Morakot and Mindulle produce more rainfall by about 5 mm per day within 300–400 km from the center during their lifespan (equal to an increase of ~4–8%) compared to their counterparts in past climates. Such results are in close agreement with previous studies, and the shift in mean daily rainfall is tested as statistically significant at a confidence level of 99.5%. The water budget analysis shows that the increased rainfall from past to present climate is accounted for mainly by the low-level convergence of moisture associated with a more vigorous secondary circulation and a higher precipitable water amount.</p></div>\",\"PeriodicalId\":8556,\"journal\":{\"name\":\"Asia-Pacific Journal of Atmospheric Sciences\",\"volume\":\"60 3\",\"pages\":\"345 - 364\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-03-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Asia-Pacific Journal of Atmospheric Sciences\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s13143-023-00345-1\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"METEOROLOGY & ATMOSPHERIC SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asia-Pacific Journal of Atmospheric Sciences","FirstCategoryId":"89","ListUrlMain":"https://link.springer.com/article/10.1007/s13143-023-00345-1","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

莫拉克台风(2009 年)和明都拉台风(2004 年)是台湾有记录以来降雨量最大、破坏力最强的两个台风,这两个台风都与强大的低层西南季风气流有关。富含水汽的西南季风气流和台风引起的西北气流通常在台湾中央山脉交汇,产生灾难性降雨。我们利用云解析模式(CRM),采用伪全球变暖(PGW)方法对这两次风暴进行模拟,以评估长期气候变化造成的降水量。对每场风暴都模拟了两种情况并进行了比较--在当今气候下的对照运行和在四十年前的过去环境下的敏感性测试,其中气候变化信号("三角洲")是利用全球再分析数据计算的 1990-2009 年与 1950-1969 年之间的差值。在对照运行中,CRM 以 3 千米网格大小真实地再现了这两个台风,在灵敏度测试中,它们的演变与现在的台风高度相似,尽管灵敏度运行中的背景比现在略微凉爽和干燥。在当前气候条件下,莫拉克和明都尔与过去气候条件下的台风相比,在其生命周期内,距中心 300-400 公里范围内的降雨量每天增加约 5 毫米(相当于增加约 4-8%)。这些结果与之前的研究结果非常吻合,而且日平均降雨量的变化在 99.5% 的置信水平下具有显著的统计学意义。水量收支分析表明,从过去气候到现在气候降雨量增加的主要原因是与更强劲的次级环流和更高的可降水量相关的低层水汽辐合。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Effects of Long-term Climate Change on Typhoon Rainfall Associated with Southwesterly Monsoon Flow near Taiwan: Mindulle (2004) and Morakot (2009)

Typhoons Morakot (2009) and Mindulle (2004) were two of the rainiest and most damaging typhoons to hit Taiwan on record, where both cases are associated with a strong low-level southwesterly monsoon flow. The moisture-rich southwesterly monsoon flow and the typhoon-induced northwesterly current usually converge on Taiwan’s Central Mountain Range to produce catastrophic rainfall. The two storms are simulated with a cloud-resolving model (CRM) using the pseudo-global-warming (PGW) methodology to assess the fraction of precipitation attributable to long-term climate change. For each storm, two scenarios are simulated and compared—the control run in present-day climate and the sensitivity test in a past environment four decades ago, where the climate-change signal (“deltas”) is computed using global reanalysis data as the difference between 1990–2009 and 1950–1969. Being realistically reproduced by the CRM at a 3-km grid size in the control run, both typhoons progress in the sensitivity test with highly similar evolution to their present-day counterpart, even though the background in the sensitivity run is slightly cooler and drier than the present. Under the current climate, Morakot and Mindulle produce more rainfall by about 5 mm per day within 300–400 km from the center during their lifespan (equal to an increase of ~4–8%) compared to their counterparts in past climates. Such results are in close agreement with previous studies, and the shift in mean daily rainfall is tested as statistically significant at a confidence level of 99.5%. The water budget analysis shows that the increased rainfall from past to present climate is accounted for mainly by the low-level convergence of moisture associated with a more vigorous secondary circulation and a higher precipitable water amount.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Asia-Pacific Journal of Atmospheric Sciences
Asia-Pacific Journal of Atmospheric Sciences 地学-气象与大气科学
CiteScore
5.50
自引率
4.30%
发文量
34
审稿时长
>12 weeks
期刊介绍: The Asia-Pacific Journal of Atmospheric Sciences (APJAS) is an international journal of the Korean Meteorological Society (KMS), published fully in English. It has started from 2008 by succeeding the KMS'' former journal, the Journal of the Korean Meteorological Society (JKMS), which published a total of 47 volumes as of 2011, in its time-honored tradition since 1965. Since 2008, the APJAS is included in the journal list of Thomson Reuters’ SCIE (Science Citation Index Expanded) and also in SCOPUS, the Elsevier Bibliographic Database, indicating the increased awareness and quality of the journal.
期刊最新文献
Impact of Arctic Sea Ice Representation on Extended Medium-Range Forecasting: a Case Study of the 2016 Barents-Kara Sea Warming Event Comparative Analysis of GloSea6 Hindcasts for Two Extreme El Niño Events and Their Impact on Indo-Western North Pacific Climate Microphysical Characteristics of Snowfall in Seoul, South Korea and Their Changes with Meteorological Conditions Correction: Forecast Accuracy and Physics Sensitivity in High-Resolution Simulations of Precipitation Events in Summer 2022 by the Korean Integrated Model Comprehensive Analysis of PM2.5 Concentrations in the Seoul Metro Underground Stations: Relationships with Indoor Sources and Outdoor Air Quality
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1