José Adalberto Castillo-Robles, Eddie Nahúm Armendáriz-Mireles, Carlos Adrián Calles-Arriaga, Enrique Rocha-Rangel, Wilian Jesús Pech-Rodríguez, Ivanovich Estrada Guel, Erick Santiago Mata Herrera, José Alberto Ramírez-de-León
{"title":"作为光学传感器和染料敏化太阳能电池潜在感光材料的天然颜料粉末的铣削加工、形态学和光学特性分析","authors":"José Adalberto Castillo-Robles, Eddie Nahúm Armendáriz-Mireles, Carlos Adrián Calles-Arriaga, Enrique Rocha-Rangel, Wilian Jesús Pech-Rodríguez, Ivanovich Estrada Guel, Erick Santiago Mata Herrera, José Alberto Ramírez-de-León","doi":"10.1142/s1793292024500085","DOIUrl":null,"url":null,"abstract":"<p>Dye-Sensitized Solar Cells (DSSC) and optical fiber-based-sensors sensitized with organic dyes play a fundamental role in modern technology, particularly in the family of photovoltaic power generation devices and measurement of chemical variables. DSSC is low-cost, highly efficient, and easy to manufacture. Therefore, they are a suitable option for many engineering applications. This paper deals with natural pigment extraction (spirulina, carrots (beta-carotene), and beetroot) at different milling and temperature conditions. Nanoparticles were fabricated using an SPEX mill and a planetary ball mill. The particle size distribution, absorbance (UV-Vis), and powder morphology were obtained using Field Emission Scanning Electron Microscopy (FESEM). Herein, the optical characterization of modified TiO<sub>2</sub> powder at different temperatures and milling conditions is performed. Results indicate that each natural dye is sensitive to operational temperature. In addition, the absorbance of the pigments is affected by milling conditions and particle size distribution. During SEM characterization, rounded particles were observed in the starting materials with average sizes of more than 15 microns in diameter until they were reduced to nanometer ranges close to 100 using SPEX milling. The observed absorption spectra range from 400 nm to 642 nm for spirulina. Moreover, the experimental results show that the intensity of the absorption peaks is affected by the temperature, which indicates a degradation of the dye. Therefore, different combinations of natural dyes will be feasible to improve the wide range of light absorption of the visible spectra and stability of DSSCs and optical fiber-based sensors.</p>","PeriodicalId":18978,"journal":{"name":"Nano","volume":"8 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2024-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Milling Processing, Morphology, and Optical Characterization of Powders from Natural Pigments as a Potential Sensitizing Material for Optical Sensors and Dye-Sensitized Solar Cells\",\"authors\":\"José Adalberto Castillo-Robles, Eddie Nahúm Armendáriz-Mireles, Carlos Adrián Calles-Arriaga, Enrique Rocha-Rangel, Wilian Jesús Pech-Rodríguez, Ivanovich Estrada Guel, Erick Santiago Mata Herrera, José Alberto Ramírez-de-León\",\"doi\":\"10.1142/s1793292024500085\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Dye-Sensitized Solar Cells (DSSC) and optical fiber-based-sensors sensitized with organic dyes play a fundamental role in modern technology, particularly in the family of photovoltaic power generation devices and measurement of chemical variables. DSSC is low-cost, highly efficient, and easy to manufacture. Therefore, they are a suitable option for many engineering applications. This paper deals with natural pigment extraction (spirulina, carrots (beta-carotene), and beetroot) at different milling and temperature conditions. Nanoparticles were fabricated using an SPEX mill and a planetary ball mill. The particle size distribution, absorbance (UV-Vis), and powder morphology were obtained using Field Emission Scanning Electron Microscopy (FESEM). Herein, the optical characterization of modified TiO<sub>2</sub> powder at different temperatures and milling conditions is performed. Results indicate that each natural dye is sensitive to operational temperature. In addition, the absorbance of the pigments is affected by milling conditions and particle size distribution. During SEM characterization, rounded particles were observed in the starting materials with average sizes of more than 15 microns in diameter until they were reduced to nanometer ranges close to 100 using SPEX milling. The observed absorption spectra range from 400 nm to 642 nm for spirulina. Moreover, the experimental results show that the intensity of the absorption peaks is affected by the temperature, which indicates a degradation of the dye. Therefore, different combinations of natural dyes will be feasible to improve the wide range of light absorption of the visible spectra and stability of DSSCs and optical fiber-based sensors.</p>\",\"PeriodicalId\":18978,\"journal\":{\"name\":\"Nano\",\"volume\":\"8 1\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-02-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nano\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1142/s1793292024500085\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1142/s1793292024500085","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Milling Processing, Morphology, and Optical Characterization of Powders from Natural Pigments as a Potential Sensitizing Material for Optical Sensors and Dye-Sensitized Solar Cells
Dye-Sensitized Solar Cells (DSSC) and optical fiber-based-sensors sensitized with organic dyes play a fundamental role in modern technology, particularly in the family of photovoltaic power generation devices and measurement of chemical variables. DSSC is low-cost, highly efficient, and easy to manufacture. Therefore, they are a suitable option for many engineering applications. This paper deals with natural pigment extraction (spirulina, carrots (beta-carotene), and beetroot) at different milling and temperature conditions. Nanoparticles were fabricated using an SPEX mill and a planetary ball mill. The particle size distribution, absorbance (UV-Vis), and powder morphology were obtained using Field Emission Scanning Electron Microscopy (FESEM). Herein, the optical characterization of modified TiO2 powder at different temperatures and milling conditions is performed. Results indicate that each natural dye is sensitive to operational temperature. In addition, the absorbance of the pigments is affected by milling conditions and particle size distribution. During SEM characterization, rounded particles were observed in the starting materials with average sizes of more than 15 microns in diameter until they were reduced to nanometer ranges close to 100 using SPEX milling. The observed absorption spectra range from 400 nm to 642 nm for spirulina. Moreover, the experimental results show that the intensity of the absorption peaks is affected by the temperature, which indicates a degradation of the dye. Therefore, different combinations of natural dyes will be feasible to improve the wide range of light absorption of the visible spectra and stability of DSSCs and optical fiber-based sensors.
期刊介绍:
NANO is an international peer-reviewed monthly journal for nanoscience and nanotechnology that presents forefront fundamental research and new emerging topics. It features timely scientific reports of new results and technical breakthroughs and also contains interesting review articles about recent hot issues.
NANO provides an ideal forum for presenting original reports of theoretical and experimental nanoscience and nanotechnology research. Research areas of interest include: nanomaterials including nano-related biomaterials, new phenomena and newly developed characterization tools, fabrication methods including by self-assembly, device applications, and numerical simulation, modeling, and theory. However, in light of the current stage development of nanoscience, manuscripts on numerical simulation, modeling, and/or theory only without experimental evidences are considered as not pertinent to the scope of NANO.