{"title":"用于图像标题的标签参考和标签引导转换器","authors":"Yaohua Yi, Yinkai Liang, Dezhu Kong, Ziwei Tang, Jibing Peng","doi":"10.1049/cvi2.12280","DOIUrl":null,"url":null,"abstract":"<p>Image captioning is an important task for understanding images. Recently, many studies have used tags to build alignments between image information and language information. However, existing methods ignore the problem that simple semantic tags have difficulty expressing the detailed semantics for different image contents. Therefore, the authors propose a tag-inferring and tag-guided Transformer for image captioning to generate fine-grained captions. First, a tag-inferring encoder is proposed, which uses the tags extracted by the scene graph model to infer tags with deeper semantic information. Then, with the obtained deep tag information, a tag-guided decoder that includes short-term attention to improve the features of words in the sentence and gated cross-modal attention to combine image features, tag features and language features to produce informative semantic features is proposed. Finally, the word probability distribution of all positions in the sequence is calculated to generate descriptions for the image. The experiments demonstrate that the authors’ method can combine tags to obtain precise captions and that it achieves competitive performance with a 40.6% BLEU-4 score and 135.3% CIDEr score on the MSCOCO data set.</p>","PeriodicalId":56304,"journal":{"name":"IET Computer Vision","volume":"18 6","pages":"801-812"},"PeriodicalIF":1.5000,"publicationDate":"2024-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/cvi2.12280","citationCount":"0","resultStr":"{\"title\":\"Tag-inferring and tag-guided Transformer for image captioning\",\"authors\":\"Yaohua Yi, Yinkai Liang, Dezhu Kong, Ziwei Tang, Jibing Peng\",\"doi\":\"10.1049/cvi2.12280\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Image captioning is an important task for understanding images. Recently, many studies have used tags to build alignments between image information and language information. However, existing methods ignore the problem that simple semantic tags have difficulty expressing the detailed semantics for different image contents. Therefore, the authors propose a tag-inferring and tag-guided Transformer for image captioning to generate fine-grained captions. First, a tag-inferring encoder is proposed, which uses the tags extracted by the scene graph model to infer tags with deeper semantic information. Then, with the obtained deep tag information, a tag-guided decoder that includes short-term attention to improve the features of words in the sentence and gated cross-modal attention to combine image features, tag features and language features to produce informative semantic features is proposed. Finally, the word probability distribution of all positions in the sequence is calculated to generate descriptions for the image. The experiments demonstrate that the authors’ method can combine tags to obtain precise captions and that it achieves competitive performance with a 40.6% BLEU-4 score and 135.3% CIDEr score on the MSCOCO data set.</p>\",\"PeriodicalId\":56304,\"journal\":{\"name\":\"IET Computer Vision\",\"volume\":\"18 6\",\"pages\":\"801-812\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2024-03-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1049/cvi2.12280\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IET Computer Vision\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1049/cvi2.12280\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Computer Vision","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/cvi2.12280","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Tag-inferring and tag-guided Transformer for image captioning
Image captioning is an important task for understanding images. Recently, many studies have used tags to build alignments between image information and language information. However, existing methods ignore the problem that simple semantic tags have difficulty expressing the detailed semantics for different image contents. Therefore, the authors propose a tag-inferring and tag-guided Transformer for image captioning to generate fine-grained captions. First, a tag-inferring encoder is proposed, which uses the tags extracted by the scene graph model to infer tags with deeper semantic information. Then, with the obtained deep tag information, a tag-guided decoder that includes short-term attention to improve the features of words in the sentence and gated cross-modal attention to combine image features, tag features and language features to produce informative semantic features is proposed. Finally, the word probability distribution of all positions in the sequence is calculated to generate descriptions for the image. The experiments demonstrate that the authors’ method can combine tags to obtain precise captions and that it achieves competitive performance with a 40.6% BLEU-4 score and 135.3% CIDEr score on the MSCOCO data set.
期刊介绍:
IET Computer Vision seeks original research papers in a wide range of areas of computer vision. The vision of the journal is to publish the highest quality research work that is relevant and topical to the field, but not forgetting those works that aim to introduce new horizons and set the agenda for future avenues of research in computer vision.
IET Computer Vision welcomes submissions on the following topics:
Biologically and perceptually motivated approaches to low level vision (feature detection, etc.);
Perceptual grouping and organisation
Representation, analysis and matching of 2D and 3D shape
Shape-from-X
Object recognition
Image understanding
Learning with visual inputs
Motion analysis and object tracking
Multiview scene analysis
Cognitive approaches in low, mid and high level vision
Control in visual systems
Colour, reflectance and light
Statistical and probabilistic models
Face and gesture
Surveillance
Biometrics and security
Robotics
Vehicle guidance
Automatic model aquisition
Medical image analysis and understanding
Aerial scene analysis and remote sensing
Deep learning models in computer vision
Both methodological and applications orientated papers are welcome.
Manuscripts submitted are expected to include a detailed and analytical review of the literature and state-of-the-art exposition of the original proposed research and its methodology, its thorough experimental evaluation, and last but not least, comparative evaluation against relevant and state-of-the-art methods. Submissions not abiding by these minimum requirements may be returned to authors without being sent to review.
Special Issues Current Call for Papers:
Computer Vision for Smart Cameras and Camera Networks - https://digital-library.theiet.org/files/IET_CVI_SC.pdf
Computer Vision for the Creative Industries - https://digital-library.theiet.org/files/IET_CVI_CVCI.pdf