Ole Øystein Knudsen, Eystein Vada, Waldemar Krieger, Jan Bertram, Ivana Jevremovic, Håvard Wilson
{"title":"铝在海水中的阴极保护","authors":"Ole Øystein Knudsen, Eystein Vada, Waldemar Krieger, Jan Bertram, Ivana Jevremovic, Håvard Wilson","doi":"10.1002/maco.202314229","DOIUrl":null,"url":null,"abstract":"Cathodic protection of various 6000 aluminium alloys and variants of EN AW‐5083 in seawater has been studied. The alloys were immersed in seawater and polarized to about −1.06 V versus Ag/AgCl for 1 year. The cathodic current density increased initially due to formation of a copper film on the surface, but the effect was temporary. After 200 days, the current demand for cathodic protection had stabilized on all the investigated alloys at 0 to about 20 mA/m<jats:sup>2</jats:sup>, depending on the Fe/Si ratio in the alloy. Depending on the content of noble intermetallic particles, the aluminium will corrode at a low and constant rate. Application of a coating on the aluminium will decrease the cathodic current demand for cathodic protection significantly. Coatings on submerged aluminium are very stable and not susceptible to degradation mechanisms like cathodic disbonding.","PeriodicalId":18223,"journal":{"name":"Materials and Corrosion","volume":"43 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cathodic protection of aluminium in seawater\",\"authors\":\"Ole Øystein Knudsen, Eystein Vada, Waldemar Krieger, Jan Bertram, Ivana Jevremovic, Håvard Wilson\",\"doi\":\"10.1002/maco.202314229\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Cathodic protection of various 6000 aluminium alloys and variants of EN AW‐5083 in seawater has been studied. The alloys were immersed in seawater and polarized to about −1.06 V versus Ag/AgCl for 1 year. The cathodic current density increased initially due to formation of a copper film on the surface, but the effect was temporary. After 200 days, the current demand for cathodic protection had stabilized on all the investigated alloys at 0 to about 20 mA/m<jats:sup>2</jats:sup>, depending on the Fe/Si ratio in the alloy. Depending on the content of noble intermetallic particles, the aluminium will corrode at a low and constant rate. Application of a coating on the aluminium will decrease the cathodic current demand for cathodic protection significantly. Coatings on submerged aluminium are very stable and not susceptible to degradation mechanisms like cathodic disbonding.\",\"PeriodicalId\":18223,\"journal\":{\"name\":\"Materials and Corrosion\",\"volume\":\"43 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-03-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials and Corrosion\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1002/maco.202314229\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials and Corrosion","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/maco.202314229","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Cathodic protection of various 6000 aluminium alloys and variants of EN AW‐5083 in seawater has been studied. The alloys were immersed in seawater and polarized to about −1.06 V versus Ag/AgCl for 1 year. The cathodic current density increased initially due to formation of a copper film on the surface, but the effect was temporary. After 200 days, the current demand for cathodic protection had stabilized on all the investigated alloys at 0 to about 20 mA/m2, depending on the Fe/Si ratio in the alloy. Depending on the content of noble intermetallic particles, the aluminium will corrode at a low and constant rate. Application of a coating on the aluminium will decrease the cathodic current demand for cathodic protection significantly. Coatings on submerged aluminium are very stable and not susceptible to degradation mechanisms like cathodic disbonding.