Steffane Q. Nascimento , Rodrigo M. Iost , Thiago C. Oliveira , Rafael N. Colombo , Luana C.I. Faria , Thiago Bertaglia , Jéssica C. Pacheco , Mona N. Oliveira , Erika R. Manuli , Geovana M. Pereira , Ester C. Sabino , Frank N. Crespilho
{"title":"用于检测人类唾液中 SARS-CoV-2 的低成本超灵敏柔性碳纤维生物传感器","authors":"Steffane Q. Nascimento , Rodrigo M. Iost , Thiago C. Oliveira , Rafael N. Colombo , Luana C.I. Faria , Thiago Bertaglia , Jéssica C. Pacheco , Mona N. Oliveira , Erika R. Manuli , Geovana M. Pereira , Ester C. Sabino , Frank N. Crespilho","doi":"10.1016/j.biosx.2024.100472","DOIUrl":null,"url":null,"abstract":"<div><p>The ongoing COVID-19 pandemic continues to have a significant impact on our daily lives, necessitating the rapid development of early diagnostic tools to mitigate the emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) outbreaks. In this context, biosensor technology has emerged as a highly promising strategy to address the challenges of low sensitivity, specificity, and high cost associated with clinical diagnosis. In this study, we present a novel and cost-effective approach for the rapid detection of SARS-CoV-2 using miniaturized flexible carbon fiber (FCF) electrodes that are modified with immunoglobulin G (IgG). Our strategy take advantage of on the antigen-antibody interaction (IgG-SARS-CoV-2) and leverages the surface chemistry characteristics of FCF to achieve signal amplification. Under standard conditions, we achieved a remarkable detection limit of 0.16 pg mmL<sup>−1</sup> for the SARS-CoV-2 RBD protein. Additionally, when analyzing human saliva samples, our biosensing approach demonstrated good agreement with RT-PCR results, specifically for patients who tested positive for SARS-CoV-2. The sensitivity, selectivity, and accuracy of our approach were approximately 93.3%.</p></div>","PeriodicalId":260,"journal":{"name":"Biosensors and Bioelectronics: X","volume":"18 ","pages":"Article 100472"},"PeriodicalIF":10.6100,"publicationDate":"2024-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2590137024000360/pdfft?md5=a05bc951ab835b3d4e987131cd74fff5&pid=1-s2.0-S2590137024000360-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Low-cost ultrasensitive flexible carbon fiber-based biosensor for the detection of SARS-CoV-2 in human saliva\",\"authors\":\"Steffane Q. Nascimento , Rodrigo M. Iost , Thiago C. Oliveira , Rafael N. Colombo , Luana C.I. Faria , Thiago Bertaglia , Jéssica C. Pacheco , Mona N. Oliveira , Erika R. Manuli , Geovana M. Pereira , Ester C. Sabino , Frank N. Crespilho\",\"doi\":\"10.1016/j.biosx.2024.100472\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The ongoing COVID-19 pandemic continues to have a significant impact on our daily lives, necessitating the rapid development of early diagnostic tools to mitigate the emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) outbreaks. In this context, biosensor technology has emerged as a highly promising strategy to address the challenges of low sensitivity, specificity, and high cost associated with clinical diagnosis. In this study, we present a novel and cost-effective approach for the rapid detection of SARS-CoV-2 using miniaturized flexible carbon fiber (FCF) electrodes that are modified with immunoglobulin G (IgG). Our strategy take advantage of on the antigen-antibody interaction (IgG-SARS-CoV-2) and leverages the surface chemistry characteristics of FCF to achieve signal amplification. Under standard conditions, we achieved a remarkable detection limit of 0.16 pg mmL<sup>−1</sup> for the SARS-CoV-2 RBD protein. Additionally, when analyzing human saliva samples, our biosensing approach demonstrated good agreement with RT-PCR results, specifically for patients who tested positive for SARS-CoV-2. The sensitivity, selectivity, and accuracy of our approach were approximately 93.3%.</p></div>\",\"PeriodicalId\":260,\"journal\":{\"name\":\"Biosensors and Bioelectronics: X\",\"volume\":\"18 \",\"pages\":\"Article 100472\"},\"PeriodicalIF\":10.6100,\"publicationDate\":\"2024-03-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2590137024000360/pdfft?md5=a05bc951ab835b3d4e987131cd74fff5&pid=1-s2.0-S2590137024000360-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biosensors and Bioelectronics: X\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2590137024000360\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Biochemistry, Genetics and Molecular Biology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biosensors and Bioelectronics: X","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590137024000360","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
Low-cost ultrasensitive flexible carbon fiber-based biosensor for the detection of SARS-CoV-2 in human saliva
The ongoing COVID-19 pandemic continues to have a significant impact on our daily lives, necessitating the rapid development of early diagnostic tools to mitigate the emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) outbreaks. In this context, biosensor technology has emerged as a highly promising strategy to address the challenges of low sensitivity, specificity, and high cost associated with clinical diagnosis. In this study, we present a novel and cost-effective approach for the rapid detection of SARS-CoV-2 using miniaturized flexible carbon fiber (FCF) electrodes that are modified with immunoglobulin G (IgG). Our strategy take advantage of on the antigen-antibody interaction (IgG-SARS-CoV-2) and leverages the surface chemistry characteristics of FCF to achieve signal amplification. Under standard conditions, we achieved a remarkable detection limit of 0.16 pg mmL−1 for the SARS-CoV-2 RBD protein. Additionally, when analyzing human saliva samples, our biosensing approach demonstrated good agreement with RT-PCR results, specifically for patients who tested positive for SARS-CoV-2. The sensitivity, selectivity, and accuracy of our approach were approximately 93.3%.
期刊介绍:
Biosensors and Bioelectronics: X, an open-access companion journal of Biosensors and Bioelectronics, boasts a 2020 Impact Factor of 10.61 (Journal Citation Reports, Clarivate Analytics 2021). Offering authors the opportunity to share their innovative work freely and globally, Biosensors and Bioelectronics: X aims to be a timely and permanent source of information. The journal publishes original research papers, review articles, communications, editorial highlights, perspectives, opinions, and commentaries at the intersection of technological advancements and high-impact applications. Manuscripts submitted to Biosensors and Bioelectronics: X are assessed based on originality and innovation in technology development or applications, aligning with the journal's goal to cater to a broad audience interested in this dynamic field.