天然铁和粘土矿物在异相电-芬顿过程中的应用最新进展

IF 7.9 2区 化学 Q1 CHEMISTRY, PHYSICAL Current Opinion in Electrochemistry Pub Date : 2024-03-26 DOI:10.1016/j.coelec.2024.101495
Pan Xia , Hui Zhang , Zhihong Ye
{"title":"天然铁和粘土矿物在异相电-芬顿过程中的应用最新进展","authors":"Pan Xia ,&nbsp;Hui Zhang ,&nbsp;Zhihong Ye","doi":"10.1016/j.coelec.2024.101495","DOIUrl":null,"url":null,"abstract":"<div><p>Heterogeneous electro-Fenton (EF) using solid catalysts has emerged as a robust advanced oxidation process for wastewater treatment, capitalizing on the advantages of <em>in-situ</em> oxidant generation, minimal iron sludge production, and a wide pH working window. However, synthetic iron-based catalysts face great challenges in practical application due to their high cost and the risk of secondary pollution. In contrast, the use of natural minerals as catalysts has emerged as a promising alternative owing to their cost-effectiveness, abundance, and eco-friendliness natures. Herein, a summary of the application of natural iron and clay minerals in EF is provided, focusing on the performance, catalytic mechanisms, as well as challenges and perspectives for large-scale application.</p></div>","PeriodicalId":11028,"journal":{"name":"Current Opinion in Electrochemistry","volume":"46 ","pages":"Article 101495"},"PeriodicalIF":7.9000,"publicationDate":"2024-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Recent advances in the application of natural iron and clay minerals in heterogeneous electro-Fenton process\",\"authors\":\"Pan Xia ,&nbsp;Hui Zhang ,&nbsp;Zhihong Ye\",\"doi\":\"10.1016/j.coelec.2024.101495\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Heterogeneous electro-Fenton (EF) using solid catalysts has emerged as a robust advanced oxidation process for wastewater treatment, capitalizing on the advantages of <em>in-situ</em> oxidant generation, minimal iron sludge production, and a wide pH working window. However, synthetic iron-based catalysts face great challenges in practical application due to their high cost and the risk of secondary pollution. In contrast, the use of natural minerals as catalysts has emerged as a promising alternative owing to their cost-effectiveness, abundance, and eco-friendliness natures. Herein, a summary of the application of natural iron and clay minerals in EF is provided, focusing on the performance, catalytic mechanisms, as well as challenges and perspectives for large-scale application.</p></div>\",\"PeriodicalId\":11028,\"journal\":{\"name\":\"Current Opinion in Electrochemistry\",\"volume\":\"46 \",\"pages\":\"Article 101495\"},\"PeriodicalIF\":7.9000,\"publicationDate\":\"2024-03-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Opinion in Electrochemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2451910324000565\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Opinion in Electrochemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2451910324000565","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

使用固体催化剂的异相电-芬顿(EF)具有原位生成氧化剂、铁污泥产生量极少、pH 值工作窗口宽广等优点,已成为一种用于废水处理的强效高级氧化工艺。然而,由于合成铁基催化剂成本高且存在二次污染的风险,因此在实际应用中面临着巨大的挑战。相比之下,使用天然矿物作为催化剂因其成本效益高、资源丰富和生态友好的特性,已成为一种很有前景的替代方法。本文概述了天然铁和粘土矿物在 EF 中的应用,重点介绍了其性能、催化机制以及大规模应用所面临的挑战和前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Recent advances in the application of natural iron and clay minerals in heterogeneous electro-Fenton process

Heterogeneous electro-Fenton (EF) using solid catalysts has emerged as a robust advanced oxidation process for wastewater treatment, capitalizing on the advantages of in-situ oxidant generation, minimal iron sludge production, and a wide pH working window. However, synthetic iron-based catalysts face great challenges in practical application due to their high cost and the risk of secondary pollution. In contrast, the use of natural minerals as catalysts has emerged as a promising alternative owing to their cost-effectiveness, abundance, and eco-friendliness natures. Herein, a summary of the application of natural iron and clay minerals in EF is provided, focusing on the performance, catalytic mechanisms, as well as challenges and perspectives for large-scale application.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Current Opinion in Electrochemistry
Current Opinion in Electrochemistry Chemistry-Analytical Chemistry
CiteScore
14.00
自引率
5.90%
发文量
272
审稿时长
73 days
期刊介绍: The development of the Current Opinion journals stemmed from the acknowledgment of the growing challenge for specialists to stay abreast of the expanding volume of information within their field. In Current Opinion in Electrochemistry, they help the reader by providing in a systematic manner: 1.The views of experts on current advances in electrochemistry in a clear and readable form. 2.Evaluations of the most interesting papers, annotated by experts, from the great wealth of original publications. In the realm of electrochemistry, the subject is divided into 12 themed sections, with each section undergoing an annual review cycle: • Bioelectrochemistry • Electrocatalysis • Electrochemical Materials and Engineering • Energy Storage: Batteries and Supercapacitors • Energy Transformation • Environmental Electrochemistry • Fundamental & Theoretical Electrochemistry • Innovative Methods in Electrochemistry • Organic & Molecular Electrochemistry • Physical & Nano-Electrochemistry • Sensors & Bio-sensors •
期刊最新文献
Investigating water structure and dynamics at metal/water interfaces from classical, ab initio to machine learning molecular dynamics Salt cavern redox flow battery: The next-generation long-duration, large-scale energy storage system Advancements in membrane-less electrolysis configurations: Innovations and challenges Lithium oxalate-based lithium-carbon dioxide batteries with high energy efficiency Applications of model electrode for investigations of reaction and transport issues in proton exchange membrane water electrolyzer
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1