Carlos E. González-Orozco, Mario Porcel, Vivekananda Mittahalli Byrareddy, Eric Rahn, William A. Cardona, Diego A. Salinas Velandia, Gustavo A. Araujo-Carrillo, Jarrod Kath
{"title":"为哥伦比亚咖啡生产应对气候变化做好准备:综合空间建模以确定潜在的罗布斯塔咖啡(Coffea canephora P.)种植区","authors":"Carlos E. González-Orozco, Mario Porcel, Vivekananda Mittahalli Byrareddy, Eric Rahn, William A. Cardona, Diego A. Salinas Velandia, Gustavo A. Araujo-Carrillo, Jarrod Kath","doi":"10.1007/s10584-024-03717-2","DOIUrl":null,"url":null,"abstract":"<p>Meeting future demand for coffee under climate change is a challenge. Approaches that can inform where coffee may grow best under current and future climate scenarios are needed. Robusta coffee (<i>Coffea canephora</i> P.) is planted in many tropical areas and makes up around 40% of the world’s coffee supply. However, as the climate shifts, current robusta areas may become less productive, while in other areas new growing regions for robusta may emerge. Colombia is one of the world’s most important Arabica coffee producer, famous for its high-quality coffee. Although robusta coffee is not yet a commercial crop in Colombia, it could be one of the future bastions for robusta coffee in South America contributing to meeting the increasing demand, but this remains unexplored. We aimed to identify areas with highest biophysical and socio-economic potential to grow robusta coffee in Colombia. An integrated modelling approach was used, combining climate suitability and crop-yield modelling for current and future climate scenarios, soil constraints, pest risk assessment and socio-economic constraints to identify the regions with the highest potential productivity and the lowest pest and climate change risks with good market access and low security risks which don’t further expand the agricultural frontier. Our results showed that parts of the foothills along the eastern Andean Mountain ranges, the high plains of the Orinoquía region and the wet parts of the Caribbean region are the best candidates for the potential development of robusta coffee plantations in Colombia. The crop-yield model indicated highest yields of green coffee on the foothills of the eastern Andean Mountain range with an estimated average yield of 2.6 t ha<sup>−1</sup> (under rain-fed conditions) which is projected to occur at elevations below 600 m avoiding interference with the traditional and established Arabica coffee regions in Colombia. Under a 2 °C global warming scenario climate change is projected to have the largest impacts on the Caribbean region. Therefore, larger scale irrigated production system could be an appropriate option in the Caribbean region, while diversified smallholder robusta coffee agroforestry systems are considered more favourable in the Orinoquía region.</p>","PeriodicalId":10372,"journal":{"name":"Climatic Change","volume":null,"pages":null},"PeriodicalIF":4.8000,"publicationDate":"2024-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Preparing Colombian coffee production for climate change: Integrated spatial modelling to identify potential robusta coffee (Coffea canephora P.) growing areas\",\"authors\":\"Carlos E. González-Orozco, Mario Porcel, Vivekananda Mittahalli Byrareddy, Eric Rahn, William A. Cardona, Diego A. Salinas Velandia, Gustavo A. Araujo-Carrillo, Jarrod Kath\",\"doi\":\"10.1007/s10584-024-03717-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Meeting future demand for coffee under climate change is a challenge. Approaches that can inform where coffee may grow best under current and future climate scenarios are needed. Robusta coffee (<i>Coffea canephora</i> P.) is planted in many tropical areas and makes up around 40% of the world’s coffee supply. However, as the climate shifts, current robusta areas may become less productive, while in other areas new growing regions for robusta may emerge. Colombia is one of the world’s most important Arabica coffee producer, famous for its high-quality coffee. Although robusta coffee is not yet a commercial crop in Colombia, it could be one of the future bastions for robusta coffee in South America contributing to meeting the increasing demand, but this remains unexplored. We aimed to identify areas with highest biophysical and socio-economic potential to grow robusta coffee in Colombia. An integrated modelling approach was used, combining climate suitability and crop-yield modelling for current and future climate scenarios, soil constraints, pest risk assessment and socio-economic constraints to identify the regions with the highest potential productivity and the lowest pest and climate change risks with good market access and low security risks which don’t further expand the agricultural frontier. Our results showed that parts of the foothills along the eastern Andean Mountain ranges, the high plains of the Orinoquía region and the wet parts of the Caribbean region are the best candidates for the potential development of robusta coffee plantations in Colombia. The crop-yield model indicated highest yields of green coffee on the foothills of the eastern Andean Mountain range with an estimated average yield of 2.6 t ha<sup>−1</sup> (under rain-fed conditions) which is projected to occur at elevations below 600 m avoiding interference with the traditional and established Arabica coffee regions in Colombia. Under a 2 °C global warming scenario climate change is projected to have the largest impacts on the Caribbean region. Therefore, larger scale irrigated production system could be an appropriate option in the Caribbean region, while diversified smallholder robusta coffee agroforestry systems are considered more favourable in the Orinoquía region.</p>\",\"PeriodicalId\":10372,\"journal\":{\"name\":\"Climatic Change\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2024-04-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Climatic Change\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1007/s10584-024-03717-2\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Climatic Change","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1007/s10584-024-03717-2","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Preparing Colombian coffee production for climate change: Integrated spatial modelling to identify potential robusta coffee (Coffea canephora P.) growing areas
Meeting future demand for coffee under climate change is a challenge. Approaches that can inform where coffee may grow best under current and future climate scenarios are needed. Robusta coffee (Coffea canephora P.) is planted in many tropical areas and makes up around 40% of the world’s coffee supply. However, as the climate shifts, current robusta areas may become less productive, while in other areas new growing regions for robusta may emerge. Colombia is one of the world’s most important Arabica coffee producer, famous for its high-quality coffee. Although robusta coffee is not yet a commercial crop in Colombia, it could be one of the future bastions for robusta coffee in South America contributing to meeting the increasing demand, but this remains unexplored. We aimed to identify areas with highest biophysical and socio-economic potential to grow robusta coffee in Colombia. An integrated modelling approach was used, combining climate suitability and crop-yield modelling for current and future climate scenarios, soil constraints, pest risk assessment and socio-economic constraints to identify the regions with the highest potential productivity and the lowest pest and climate change risks with good market access and low security risks which don’t further expand the agricultural frontier. Our results showed that parts of the foothills along the eastern Andean Mountain ranges, the high plains of the Orinoquía region and the wet parts of the Caribbean region are the best candidates for the potential development of robusta coffee plantations in Colombia. The crop-yield model indicated highest yields of green coffee on the foothills of the eastern Andean Mountain range with an estimated average yield of 2.6 t ha−1 (under rain-fed conditions) which is projected to occur at elevations below 600 m avoiding interference with the traditional and established Arabica coffee regions in Colombia. Under a 2 °C global warming scenario climate change is projected to have the largest impacts on the Caribbean region. Therefore, larger scale irrigated production system could be an appropriate option in the Caribbean region, while diversified smallholder robusta coffee agroforestry systems are considered more favourable in the Orinoquía region.
期刊介绍:
Climatic Change is dedicated to the totality of the problem of climatic variability and change - its descriptions, causes, implications and interactions among these. The purpose of the journal is to provide a means of exchange among those working in different disciplines on problems related to climatic variations. This means that authors have an opportunity to communicate the essence of their studies to people in other climate-related disciplines and to interested non-disciplinarians, as well as to report on research in which the originality is in the combinations of (not necessarily original) work from several disciplines. The journal also includes vigorous editorial and book review sections.