Takumi Nagasawa , Kazuki Iwata , Raquel Pantojo de Souza Bachour , Keiko Ogawa-Ochiai , Norimichi Tsumura , George C. Cardoso
{"title":"利用基于图像的指力估算定量毛细血管再充盈时间","authors":"Takumi Nagasawa , Kazuki Iwata , Raquel Pantojo de Souza Bachour , Keiko Ogawa-Ochiai , Norimichi Tsumura , George C. Cardoso","doi":"10.1016/j.medengphy.2024.104168","DOIUrl":null,"url":null,"abstract":"<div><p>Skin color observation provides a simple and non-invasive method to estimate the health status of patients. Capillary Refill Time (CRT) is widely used as an indicator of pathophysiological conditions, especially in emergency patients. While the measurement of CRT is easy to perform, its evaluation is highly subjective. This study proposes a method to aid quantified CRT measurement using an RGB camera. The procedure consists in applying finger compression to the forearm, and the CRT is calculated based on the skin color change after the pressure release. We estimate compression applied by a finger from its fingernail color change during compression. Our study shows a step towards camera-based quantitative CRT for untrained individuals.</p></div>","PeriodicalId":49836,"journal":{"name":"Medical Engineering & Physics","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2024-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Quantitative Capillary Refill Time with image-based finger force estimation\",\"authors\":\"Takumi Nagasawa , Kazuki Iwata , Raquel Pantojo de Souza Bachour , Keiko Ogawa-Ochiai , Norimichi Tsumura , George C. Cardoso\",\"doi\":\"10.1016/j.medengphy.2024.104168\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Skin color observation provides a simple and non-invasive method to estimate the health status of patients. Capillary Refill Time (CRT) is widely used as an indicator of pathophysiological conditions, especially in emergency patients. While the measurement of CRT is easy to perform, its evaluation is highly subjective. This study proposes a method to aid quantified CRT measurement using an RGB camera. The procedure consists in applying finger compression to the forearm, and the CRT is calculated based on the skin color change after the pressure release. We estimate compression applied by a finger from its fingernail color change during compression. Our study shows a step towards camera-based quantitative CRT for untrained individuals.</p></div>\",\"PeriodicalId\":49836,\"journal\":{\"name\":\"Medical Engineering & Physics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-04-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Medical Engineering & Physics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1350453324000699\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medical Engineering & Physics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1350453324000699","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
Quantitative Capillary Refill Time with image-based finger force estimation
Skin color observation provides a simple and non-invasive method to estimate the health status of patients. Capillary Refill Time (CRT) is widely used as an indicator of pathophysiological conditions, especially in emergency patients. While the measurement of CRT is easy to perform, its evaluation is highly subjective. This study proposes a method to aid quantified CRT measurement using an RGB camera. The procedure consists in applying finger compression to the forearm, and the CRT is calculated based on the skin color change after the pressure release. We estimate compression applied by a finger from its fingernail color change during compression. Our study shows a step towards camera-based quantitative CRT for untrained individuals.
期刊介绍:
Medical Engineering & Physics provides a forum for the publication of the latest developments in biomedical engineering, and reflects the essential multidisciplinary nature of the subject. The journal publishes in-depth critical reviews, scientific papers and technical notes. Our focus encompasses the application of the basic principles of physics and engineering to the development of medical devices and technology, with the ultimate aim of producing improvements in the quality of health care.Topics covered include biomechanics, biomaterials, mechanobiology, rehabilitation engineering, biomedical signal processing and medical device development. Medical Engineering & Physics aims to keep both engineers and clinicians abreast of the latest applications of technology to health care.