通过布里甘结构中的聚合物纳米结晶限制增强大面积高强度纤维素纳米复合材料

IF 17.3 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Matter Pub Date : 2024-06-05 DOI:10.1016/j.matt.2024.04.014
Shengwen Kong , Chuangqi Zhao , Yingzhi Sun , Jin Huang , Longhao Zhang , Yunfei Ru , Hangsheng Zhou , Tianxu Zhou , Mingjie Liu
{"title":"通过布里甘结构中的聚合物纳米结晶限制增强大面积高强度纤维素纳米复合材料","authors":"Shengwen Kong ,&nbsp;Chuangqi Zhao ,&nbsp;Yingzhi Sun ,&nbsp;Jin Huang ,&nbsp;Longhao Zhang ,&nbsp;Yunfei Ru ,&nbsp;Hangsheng Zhou ,&nbsp;Tianxu Zhou ,&nbsp;Mingjie Liu","doi":"10.1016/j.matt.2024.04.014","DOIUrl":null,"url":null,"abstract":"<div><p>Sustainable and biodegradable materials derived from biomass are appealing candidates to replace fossil-based materials. However, the mechanical performance of biomass is insufficient for practical applications. Here, inspired by fish scales, we report a strategy to construct large-area, high-strength cellulose nanocrystal (CNC) nanocomposites with confined polymer nanocrystallization in Bouligand structures. By regulating the electrostatic repulsion of CNCs, the spacing of nanorods was reduced from 8.8 ± 0.4 to 5.0 ± 0.3 nm, and the crystallinity of the interphase extended polymer chains was regulated within such a confined space. The resulting nanocomposite films exhibited a tensile strength of 456.6 ± 18.6 MPa. Moreover, the nanocomposite films could be laminated to bulk materials, which exhibit excellent fracture toughness of 7.1 ± 0.2 MPa m<sup>1/2</sup> and hardness of 6.1 ± 0.6 GPa while being light in weight. This efficient cellulose utilization strategy offered a promising pathway for the production of robust, biodegradable, and sustainable cellulosic bioplastics.</p></div>","PeriodicalId":388,"journal":{"name":"Matter","volume":null,"pages":null},"PeriodicalIF":17.3000,"publicationDate":"2024-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Large-area, high-strength cellulose nanocomposites enhanced by confined polymer nanocrystallization in Bouligand structures\",\"authors\":\"Shengwen Kong ,&nbsp;Chuangqi Zhao ,&nbsp;Yingzhi Sun ,&nbsp;Jin Huang ,&nbsp;Longhao Zhang ,&nbsp;Yunfei Ru ,&nbsp;Hangsheng Zhou ,&nbsp;Tianxu Zhou ,&nbsp;Mingjie Liu\",\"doi\":\"10.1016/j.matt.2024.04.014\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Sustainable and biodegradable materials derived from biomass are appealing candidates to replace fossil-based materials. However, the mechanical performance of biomass is insufficient for practical applications. Here, inspired by fish scales, we report a strategy to construct large-area, high-strength cellulose nanocrystal (CNC) nanocomposites with confined polymer nanocrystallization in Bouligand structures. By regulating the electrostatic repulsion of CNCs, the spacing of nanorods was reduced from 8.8 ± 0.4 to 5.0 ± 0.3 nm, and the crystallinity of the interphase extended polymer chains was regulated within such a confined space. The resulting nanocomposite films exhibited a tensile strength of 456.6 ± 18.6 MPa. Moreover, the nanocomposite films could be laminated to bulk materials, which exhibit excellent fracture toughness of 7.1 ± 0.2 MPa m<sup>1/2</sup> and hardness of 6.1 ± 0.6 GPa while being light in weight. This efficient cellulose utilization strategy offered a promising pathway for the production of robust, biodegradable, and sustainable cellulosic bioplastics.</p></div>\",\"PeriodicalId\":388,\"journal\":{\"name\":\"Matter\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":17.3000,\"publicationDate\":\"2024-06-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Matter\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2590238524001693\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Matter","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590238524001693","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

从生物质中提取的可持续生物降解材料是替代化石材料的理想选择。然而,生物质的机械性能不足以满足实际应用的需要。在此,我们受鱼鳞的启发,报告了一种在 Bouligand 结构中通过限制聚合物纳米结晶构建大面积、高强度纤维素纳米晶体(CNC)纳米复合材料的策略。通过调节 CNC 的静电排斥力,纳米棒的间距从 8.8 ± 0.4 nm 减小到 5.0 ± 0.3 nm,相间扩展聚合物链的结晶度也在这样一个受限空间内得到了调节。所制备的纳米复合薄膜的拉伸强度为 456.6 ± 18.6 兆帕。此外,纳米复合薄膜还可与大块材料层压,其断裂韧性为 7.1 ± 0.2 MPa m1/2,硬度为 6.1 ± 0.6 GPa,而且重量轻。这种高效的纤维素利用策略为生产坚固、可生物降解和可持续的纤维素生物塑料提供了一条前景广阔的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Large-area, high-strength cellulose nanocomposites enhanced by confined polymer nanocrystallization in Bouligand structures

Sustainable and biodegradable materials derived from biomass are appealing candidates to replace fossil-based materials. However, the mechanical performance of biomass is insufficient for practical applications. Here, inspired by fish scales, we report a strategy to construct large-area, high-strength cellulose nanocrystal (CNC) nanocomposites with confined polymer nanocrystallization in Bouligand structures. By regulating the electrostatic repulsion of CNCs, the spacing of nanorods was reduced from 8.8 ± 0.4 to 5.0 ± 0.3 nm, and the crystallinity of the interphase extended polymer chains was regulated within such a confined space. The resulting nanocomposite films exhibited a tensile strength of 456.6 ± 18.6 MPa. Moreover, the nanocomposite films could be laminated to bulk materials, which exhibit excellent fracture toughness of 7.1 ± 0.2 MPa m1/2 and hardness of 6.1 ± 0.6 GPa while being light in weight. This efficient cellulose utilization strategy offered a promising pathway for the production of robust, biodegradable, and sustainable cellulosic bioplastics.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Matter
Matter MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
26.30
自引率
2.60%
发文量
367
期刊介绍: Matter, a monthly journal affiliated with Cell, spans the broad field of materials science from nano to macro levels,covering fundamentals to applications. Embracing groundbreaking technologies,it includes full-length research articles,reviews, perspectives,previews, opinions, personnel stories, and general editorial content. Matter aims to be the primary resource for researchers in academia and industry, inspiring the next generation of materials scientists.
期刊最新文献
Sp-hybridized carbon enabled crystal lattice manipulation, pushing the limit of fill factor in β-CsPbI3 perovskite solar cells Overcoming thermal energy storage density limits by liquid water recharge in zeolite-polymer composites Open aerosol microfluidics enable orthogonal compartmentalized functionalization of hydrogel particles Discovery of a novel low-cost medium-entropy stainless steel with exceptional mechanical behavior over a wide temperature range Unlocking lithium ion conduction in lithium metal fluorides
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1