等离子体中的轻杂质对钨溅射的影响

V. S. Mikhailov, P. Yu. Babenko, A. N. Zinoviev
{"title":"等离子体中的轻杂质对钨溅射的影响","authors":"V. S. Mikhailov, P. Yu. Babenko, A. N. Zinoviev","doi":"10.1134/s1027451024020095","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">\n<b>Abstract</b>—</h3><p>Calculations of the tungsten sputtering yields (the divertor material in the ITER tokamak) by He, Be, N, and O—impurity atoms in the plasma—were carried out at a collision energy of 0.010–100 keV using the Monte Carlo method. To calculate the trajectory of the incident particle, pair potentials obtained within the framework of density functional theory were used. These potentials were corrected for the parameters of the potential well obtained from spectroscopic measurements. The target consisted of tungsten randomly oriented crystals the size of one lattice constant. Next, the trajectories of the recoil particles were calculated using many-particle potentials calculated using density functional theory. Thermal vibrations of target atoms were taken into account. The vibration amplitude was taken to be 0.05 Å, which corresponded to room temperature. The strong dependence of the results on the shape of the surface potential barrier is shown, and the results are presented for two limiting cases of the surface state: a flat surface, when a planar surface potential barrier is realized, and a surface consisting of cones, when a spherical potential barrier occurs. In the experiment, the surface has some roughness, which depends on the experimental conditions. It is shown that the experimental results lie between the limiting cases we considered. Information was obtained on the average energy of sputtered atoms and angular distributions necessary for calculating the entry of impurities into the tokamak plasma.</p>","PeriodicalId":671,"journal":{"name":"Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques","volume":null,"pages":null},"PeriodicalIF":0.5000,"publicationDate":"2024-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Tungsten Sputtering Yields by Light Impurities of Plasma\",\"authors\":\"V. S. Mikhailov, P. Yu. Babenko, A. N. Zinoviev\",\"doi\":\"10.1134/s1027451024020095\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3 data-test=\\\"abstract-sub-heading\\\">\\n<b>Abstract</b>—</h3><p>Calculations of the tungsten sputtering yields (the divertor material in the ITER tokamak) by He, Be, N, and O—impurity atoms in the plasma—were carried out at a collision energy of 0.010–100 keV using the Monte Carlo method. To calculate the trajectory of the incident particle, pair potentials obtained within the framework of density functional theory were used. These potentials were corrected for the parameters of the potential well obtained from spectroscopic measurements. The target consisted of tungsten randomly oriented crystals the size of one lattice constant. Next, the trajectories of the recoil particles were calculated using many-particle potentials calculated using density functional theory. Thermal vibrations of target atoms were taken into account. The vibration amplitude was taken to be 0.05 Å, which corresponded to room temperature. The strong dependence of the results on the shape of the surface potential barrier is shown, and the results are presented for two limiting cases of the surface state: a flat surface, when a planar surface potential barrier is realized, and a surface consisting of cones, when a spherical potential barrier occurs. In the experiment, the surface has some roughness, which depends on the experimental conditions. It is shown that the experimental results lie between the limiting cases we considered. Information was obtained on the average energy of sputtered atoms and angular distributions necessary for calculating the entry of impurities into the tokamak plasma.</p>\",\"PeriodicalId\":671,\"journal\":{\"name\":\"Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2024-05-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1134/s1027451024020095\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"PHYSICS, CONDENSED MATTER\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1134/s1027451024020095","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
引用次数: 0

摘要

摘要-采用蒙特卡洛方法计算了等离子体中 He、Be、N 和 O 杂质原子在 0.010-100 千伏碰撞能量下的钨溅射产率(ITER 托卡马克中的分流器材料)。为了计算入射粒子的轨迹,使用了在密度泛函理论框架内获得的对位势。这些电位根据光谱测量获得的电位井参数进行了修正。目标由一个晶格常数大小的钨随机定向晶体组成。接着,使用密度泛函理论计算的多粒子势来计算反冲粒子的轨迹。目标原子的热振动被考虑在内。振动幅度取为 0.05 Å,相当于室温。实验结果表明,表面势垒的形状对实验结果有很强的依赖性,实验结果显示了表面状态的两种极限情况:实现平面势垒时的平面表面和出现球形势垒时由锥形组成的表面。在实验中,表面有一定的粗糙度,这取决于实验条件。实验结果表明,实验结果介于我们考虑的极限情况之间。获得了关于溅射原子平均能量和角度分布的信息,这些信息对于计算杂质进入托卡马克等离子体是必要的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Tungsten Sputtering Yields by Light Impurities of Plasma

Abstract

Calculations of the tungsten sputtering yields (the divertor material in the ITER tokamak) by He, Be, N, and O—impurity atoms in the plasma—were carried out at a collision energy of 0.010–100 keV using the Monte Carlo method. To calculate the trajectory of the incident particle, pair potentials obtained within the framework of density functional theory were used. These potentials were corrected for the parameters of the potential well obtained from spectroscopic measurements. The target consisted of tungsten randomly oriented crystals the size of one lattice constant. Next, the trajectories of the recoil particles were calculated using many-particle potentials calculated using density functional theory. Thermal vibrations of target atoms were taken into account. The vibration amplitude was taken to be 0.05 Å, which corresponded to room temperature. The strong dependence of the results on the shape of the surface potential barrier is shown, and the results are presented for two limiting cases of the surface state: a flat surface, when a planar surface potential barrier is realized, and a surface consisting of cones, when a spherical potential barrier occurs. In the experiment, the surface has some roughness, which depends on the experimental conditions. It is shown that the experimental results lie between the limiting cases we considered. Information was obtained on the average energy of sputtered atoms and angular distributions necessary for calculating the entry of impurities into the tokamak plasma.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.90
自引率
25.00%
发文量
144
审稿时长
3-8 weeks
期刊介绍: Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques publishes original articles on the topical problems of solid-state physics, materials science, experimental techniques, condensed media, nanostructures, surfaces of thin films, and phase boundaries: geometric and energetical structures of surfaces, the methods of computer simulations; physical and chemical properties and their changes upon radiation and other treatments; the methods of studies of films and surface layers of crystals (XRD, XPS, synchrotron radiation, neutron and electron diffraction, electron microscopic, scanning tunneling microscopic, atomic force microscopic studies, and other methods that provide data on the surfaces and thin films). Articles related to the methods and technics of structure studies are the focus of the journal. The journal accepts manuscripts of regular articles and reviews in English or Russian language from authors of all countries. All manuscripts are peer-reviewed.
期刊最新文献
Study of the Influence of Counterbody Material on the Tribological Characteristics of Carbon Composites Based on Fabric Prepregs Low Dissipative State of Bi2Se3 and Bi2Te3 Surfaces Effect of Electron Irradiation on the Optical Properties of Zinc Oxide Powder Modified with Magnesium Oxide Nanoparticles Complex Diagnostics of Silicon-on-Insulator Layers after Ion Implantation and Annealing Effect of the Implantation of $${\text{O}}_{{\text{2}}}^{ + }$$ Ions on the Composition and Electronic Structure of CdS Films
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1