M. M. Asadov, S. O. Mammadova, S. N. Mustafaeva, S. S. Huseynova, V. F. Lukichev
{"title":"用于锂离子电池的具有单斜结构的掺 M 超级电池 Li4Ti5O12-M(М = Zr、Nb)的电子特性建模","authors":"M. M. Asadov, S. O. Mammadova, S. N. Mustafaeva, S. S. Huseynova, V. F. Lukichev","doi":"10.1134/s1063739723600127","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p>The T–<i>x</i> phase diagram of the quasi-binary system <span>\\({\\text{L}}{{{\\text{i}}}_{2}}{\\text{O}}- {\\text{Ti}}{{{\\text{O}}}_{2}}\\)</span> was refined and the isothermal cross section of the ternary <span>\\({\\text{Li}}- {\\text{Ti}}- {\\text{O}}\\)</span> system at 298 K was constructed. The equilibrium phase regions of <span>\\({\\text{Li}}- {\\text{Ti}}- {\\text{O}}\\)</span> in the solid state are determined with the participation of boundary binary oxides and four intermediate ternary compounds <span>\\({\\text{L}}{{{\\text{i}}}_{4}}{\\text{Ti}}{{{\\text{O}}}_{4}}\\)</span>, <span>\\({\\text{L}}{{{\\text{i}}}_{2}}{\\text{Ti}}{{{\\text{O}}}_{3}}\\)</span>, <span>\\({\\text{L}}{{{\\text{i}}}_{4}}{\\text{T}}{{{\\text{i}}}_{5}}{{{\\text{O}}}_{{12}}}\\)</span> and <span>\\({\\text{L}}{{{\\text{i}}}_{2}}{\\text{T}}{{{\\text{i}}}_{3}}{{{\\text{O}}}_{7}}\\)</span>. Using the density functional theory (DFT LSDA) method, the formation energies <span>\\(({{\\Delta }_{f}}E)\\)</span> of the indicated ternary compounds of the <span>\\({\\text{L}}{{{\\text{i}}}_{2}}{\\text{O}}- {\\text{Ti}}{{{\\text{O}}}_{2}}\\)</span> system were calculated and the dependence of <span>\\({{\\Delta }_{f}}E\\)</span> on the composition was plotted. Ab initio modeling of supercells based on M-doped <span>\\(\\left( {{\\text{M }} = {\\text{ Zr}},{\\text{ Nb}}} \\right)\\)</span> anode material based on the <span>\\({\\text{L}}{{{\\text{i}}}_{4}}{\\text{T}}{{{\\text{i}}}_{5}}{{{\\text{O}}}_{{12}}}\\)</span> (<span>\\({\\text{LTO}}\\)</span>) compound with a monoclinic structure (m) was carried out. It has been shown that partial substitution of cations and oxygen in the <span>\\({\\text{m}}- {\\text{LTO}}- {\\text{M}}\\)</span> structure increases the efficiency of a lithium-ion battery (<span>\\({\\text{LIB}}\\)</span>) both by stabilizing the structure and by increasing the diffusion rate of <span>\\({\\text{L}}{{{\\text{i}}}^{ + }}\\)</span>. Due to the contribution of d-orbitals (<span>\\({\\text{Z}}{{{\\text{r}}}^{{4 + }}}\\,\\,4{\\text{d}},\\)</span> <span>\\({\\text{N}}{{{\\text{b}}}^{{3 + }}}\\)</span> 4d orbitals) to the exchange energy, partial polarization of electronic states occurs and the electronic conductivity of <span>\\({\\text{m}}- {\\text{LTO}}- {\\text{M}}\\)</span> increases. The formation of oxygen vacancies in the <span>\\({\\text{m}}- {\\text{LTO}}- {\\text{M}}\\)</span> crystal lattice, as in binary oxides, can create donor levels and improve the transport of <span>\\({\\text{L}}{{{\\text{i}}}^{ + }}\\)</span> and electrons. M-doping of the <span>\\({\\text{m}}- {\\text{LTO}}\\)</span> structure by replacing cations, in particular lithium, with Zr or Nb atoms noticeably reduces the band gap (<span>\\({{E}_{{\\text{g}}}}\\)</span>) of <span>\\({\\text{m}}- {\\text{LTO}}- {\\text{M}}\\)</span> supercells. In this case, in the <span>\\({\\text{m}}- {\\text{LTO}}- {\\text{M}}\\)</span> band structure, the Fermi level shifts to the conduction band and the band gap narrows. Decreasing the <span>\\({{E}_{{\\text{g}}}}\\)</span> value increases the electronic and lithium-ion conductivity of <span>\\({\\text{m}}- {\\text{LTO}}- {\\text{M}}\\)</span> supercells.</p>","PeriodicalId":21534,"journal":{"name":"Russian Microelectronics","volume":"38 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Modeling of the Electronic Properties of M-Doped Supercells Li4Ti5O12–M (М = Zr, Nb) with a Monoclinic Structure for Lithium-Ion Batteries\",\"authors\":\"M. M. Asadov, S. O. Mammadova, S. N. Mustafaeva, S. S. Huseynova, V. F. Lukichev\",\"doi\":\"10.1134/s1063739723600127\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3 data-test=\\\"abstract-sub-heading\\\">Abstract</h3><p>The T–<i>x</i> phase diagram of the quasi-binary system <span>\\\\({\\\\text{L}}{{{\\\\text{i}}}_{2}}{\\\\text{O}}- {\\\\text{Ti}}{{{\\\\text{O}}}_{2}}\\\\)</span> was refined and the isothermal cross section of the ternary <span>\\\\({\\\\text{Li}}- {\\\\text{Ti}}- {\\\\text{O}}\\\\)</span> system at 298 K was constructed. The equilibrium phase regions of <span>\\\\({\\\\text{Li}}- {\\\\text{Ti}}- {\\\\text{O}}\\\\)</span> in the solid state are determined with the participation of boundary binary oxides and four intermediate ternary compounds <span>\\\\({\\\\text{L}}{{{\\\\text{i}}}_{4}}{\\\\text{Ti}}{{{\\\\text{O}}}_{4}}\\\\)</span>, <span>\\\\({\\\\text{L}}{{{\\\\text{i}}}_{2}}{\\\\text{Ti}}{{{\\\\text{O}}}_{3}}\\\\)</span>, <span>\\\\({\\\\text{L}}{{{\\\\text{i}}}_{4}}{\\\\text{T}}{{{\\\\text{i}}}_{5}}{{{\\\\text{O}}}_{{12}}}\\\\)</span> and <span>\\\\({\\\\text{L}}{{{\\\\text{i}}}_{2}}{\\\\text{T}}{{{\\\\text{i}}}_{3}}{{{\\\\text{O}}}_{7}}\\\\)</span>. Using the density functional theory (DFT LSDA) method, the formation energies <span>\\\\(({{\\\\Delta }_{f}}E)\\\\)</span> of the indicated ternary compounds of the <span>\\\\({\\\\text{L}}{{{\\\\text{i}}}_{2}}{\\\\text{O}}- {\\\\text{Ti}}{{{\\\\text{O}}}_{2}}\\\\)</span> system were calculated and the dependence of <span>\\\\({{\\\\Delta }_{f}}E\\\\)</span> on the composition was plotted. Ab initio modeling of supercells based on M-doped <span>\\\\(\\\\left( {{\\\\text{M }} = {\\\\text{ Zr}},{\\\\text{ Nb}}} \\\\right)\\\\)</span> anode material based on the <span>\\\\({\\\\text{L}}{{{\\\\text{i}}}_{4}}{\\\\text{T}}{{{\\\\text{i}}}_{5}}{{{\\\\text{O}}}_{{12}}}\\\\)</span> (<span>\\\\({\\\\text{LTO}}\\\\)</span>) compound with a monoclinic structure (m) was carried out. It has been shown that partial substitution of cations and oxygen in the <span>\\\\({\\\\text{m}}- {\\\\text{LTO}}- {\\\\text{M}}\\\\)</span> structure increases the efficiency of a lithium-ion battery (<span>\\\\({\\\\text{LIB}}\\\\)</span>) both by stabilizing the structure and by increasing the diffusion rate of <span>\\\\({\\\\text{L}}{{{\\\\text{i}}}^{ + }}\\\\)</span>. Due to the contribution of d-orbitals (<span>\\\\({\\\\text{Z}}{{{\\\\text{r}}}^{{4 + }}}\\\\,\\\\,4{\\\\text{d}},\\\\)</span> <span>\\\\({\\\\text{N}}{{{\\\\text{b}}}^{{3 + }}}\\\\)</span> 4d orbitals) to the exchange energy, partial polarization of electronic states occurs and the electronic conductivity of <span>\\\\({\\\\text{m}}- {\\\\text{LTO}}- {\\\\text{M}}\\\\)</span> increases. The formation of oxygen vacancies in the <span>\\\\({\\\\text{m}}- {\\\\text{LTO}}- {\\\\text{M}}\\\\)</span> crystal lattice, as in binary oxides, can create donor levels and improve the transport of <span>\\\\({\\\\text{L}}{{{\\\\text{i}}}^{ + }}\\\\)</span> and electrons. M-doping of the <span>\\\\({\\\\text{m}}- {\\\\text{LTO}}\\\\)</span> structure by replacing cations, in particular lithium, with Zr or Nb atoms noticeably reduces the band gap (<span>\\\\({{E}_{{\\\\text{g}}}}\\\\)</span>) of <span>\\\\({\\\\text{m}}- {\\\\text{LTO}}- {\\\\text{M}}\\\\)</span> supercells. In this case, in the <span>\\\\({\\\\text{m}}- {\\\\text{LTO}}- {\\\\text{M}}\\\\)</span> band structure, the Fermi level shifts to the conduction band and the band gap narrows. Decreasing the <span>\\\\({{E}_{{\\\\text{g}}}}\\\\)</span> value increases the electronic and lithium-ion conductivity of <span>\\\\({\\\\text{m}}- {\\\\text{LTO}}- {\\\\text{M}}\\\\)</span> supercells.</p>\",\"PeriodicalId\":21534,\"journal\":{\"name\":\"Russian Microelectronics\",\"volume\":\"38 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Russian Microelectronics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1134/s1063739723600127\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Russian Microelectronics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1134/s1063739723600127","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0
摘要
摘要 完善了准二元体系\({text{L}}{{text{i}}}_{2}}{text{O}}- {text{Ti}}{{text{O}}}_{2}}\)的T-x相图,并构建了三元\({text{Li}}- {text{Ti}}-{text{O}}}\)体系在298 K下的等温截面。在边界二元氧化物和四种中间三元化合物 \({\{L}}{{text{i}}_{4}}{text{Ti}}{{{text{O}}} 的参与下,确定了 \({\{L}}{{text{i}}_{4}}{text{Ti}}{{{text{O}}}_{4}}\) 在固态下的平衡相区、\({\text{L}}{{{\text{i}}}_{2}}{\text{Ti}}{{{\text{O}}}_{3}}\),\({\text{L}}{{{\text{i}}}_{4}}{\text{T}}{{{\text{i}}}_{5}}{{{\text{O}}}_{{12}}}\) and \({\text{L}}{{{\text{i}}}_{2}}{\text{T}}{{{\text{i}}}_{3}}{{{\text{O}}}_{7}}\).使用密度泛函理论(DFT LSDA)方法、({\text{L}}{{text{i}}}_{2}}{\text{O}}-{\text{Ti}}{{text{O}}}_{2}}\)体系的三元化合物的形成能\(({{\Delta }_{f}}E)\),并绘制了\({{\Delta }_{f}}E)对组成的依赖关系图。基于掺杂 M 的超级电池的 Ab initio 建模({{text{M }} = {\text{ Zr}}、({\text{L}}{{text{i}}}_{4}}{text{T}}{{text{i}}}_{5}}{{{text{O}}}}_{12}}}}\)化合物的单斜结构(m)为基础的正极材料进行了 Ab initio 建模。研究表明,在({\text{m}}- {\text{LTO}}- {\text{M}}\)结构中部分取代阳离子和氧可以通过稳定结构和提高({\text{L}}{{text{i}}}^{ + }}\)的扩散速率来提高锂离子电池(\({\text{LIB}}\))的效率。由于 d 轨道(\({\text{Z}}{{text{r}}^{4 + }}}\,4{\text{d}},\) \({\text{N}}{{\text{b}}^{3 + }}}\) 4d 轨道)对交换能的贡献、电子态发生部分极化,\({\text{m}}- {\text{LTO}}- {\text{M}}\)的电子传导性增加。与二元氧化物一样,在({\{m}}- {\{LTO}}- {\{M}})晶格中形成的氧空位可以产生供体水平,改善(\{L}}{\{i}}^{ + }})和电子的传输。通过用锆原子或铌原子取代阳离子,特别是锂原子,对\({text{m}}- {text{LTO}}\)结构进行M掺杂,可以明显降低\({text{m}}- {text{LTO}}-{text{M}}\)超级电池的带隙(\({{E}_{text{g}}}}))。在这种情况下,在\({/text{m}}- {\text{LTO}}- {/text{M}}/)带状结构中,费米级向导带移动,带隙变窄。降低\({{E}_{text/{g}}}}/)值可以提高\({\text{m}}- {\text{LTO}}- {\text{M}}/)超级电池的电子和锂离子电导率。
Modeling of the Electronic Properties of M-Doped Supercells Li4Ti5O12–M (М = Zr, Nb) with a Monoclinic Structure for Lithium-Ion Batteries
Abstract
The T–x phase diagram of the quasi-binary system \({\text{L}}{{{\text{i}}}_{2}}{\text{O}}- {\text{Ti}}{{{\text{O}}}_{2}}\) was refined and the isothermal cross section of the ternary \({\text{Li}}- {\text{Ti}}- {\text{O}}\) system at 298 K was constructed. The equilibrium phase regions of \({\text{Li}}- {\text{Ti}}- {\text{O}}\) in the solid state are determined with the participation of boundary binary oxides and four intermediate ternary compounds \({\text{L}}{{{\text{i}}}_{4}}{\text{Ti}}{{{\text{O}}}_{4}}\), \({\text{L}}{{{\text{i}}}_{2}}{\text{Ti}}{{{\text{O}}}_{3}}\), \({\text{L}}{{{\text{i}}}_{4}}{\text{T}}{{{\text{i}}}_{5}}{{{\text{O}}}_{{12}}}\) and \({\text{L}}{{{\text{i}}}_{2}}{\text{T}}{{{\text{i}}}_{3}}{{{\text{O}}}_{7}}\). Using the density functional theory (DFT LSDA) method, the formation energies \(({{\Delta }_{f}}E)\) of the indicated ternary compounds of the \({\text{L}}{{{\text{i}}}_{2}}{\text{O}}- {\text{Ti}}{{{\text{O}}}_{2}}\) system were calculated and the dependence of \({{\Delta }_{f}}E\) on the composition was plotted. Ab initio modeling of supercells based on M-doped \(\left( {{\text{M }} = {\text{ Zr}},{\text{ Nb}}} \right)\) anode material based on the \({\text{L}}{{{\text{i}}}_{4}}{\text{T}}{{{\text{i}}}_{5}}{{{\text{O}}}_{{12}}}\) (\({\text{LTO}}\)) compound with a monoclinic structure (m) was carried out. It has been shown that partial substitution of cations and oxygen in the \({\text{m}}- {\text{LTO}}- {\text{M}}\) structure increases the efficiency of a lithium-ion battery (\({\text{LIB}}\)) both by stabilizing the structure and by increasing the diffusion rate of \({\text{L}}{{{\text{i}}}^{ + }}\). Due to the contribution of d-orbitals (\({\text{Z}}{{{\text{r}}}^{{4 + }}}\,\,4{\text{d}},\)\({\text{N}}{{{\text{b}}}^{{3 + }}}\) 4d orbitals) to the exchange energy, partial polarization of electronic states occurs and the electronic conductivity of \({\text{m}}- {\text{LTO}}- {\text{M}}\) increases. The formation of oxygen vacancies in the \({\text{m}}- {\text{LTO}}- {\text{M}}\) crystal lattice, as in binary oxides, can create donor levels and improve the transport of \({\text{L}}{{{\text{i}}}^{ + }}\) and electrons. M-doping of the \({\text{m}}- {\text{LTO}}\) structure by replacing cations, in particular lithium, with Zr or Nb atoms noticeably reduces the band gap (\({{E}_{{\text{g}}}}\)) of \({\text{m}}- {\text{LTO}}- {\text{M}}\) supercells. In this case, in the \({\text{m}}- {\text{LTO}}- {\text{M}}\) band structure, the Fermi level shifts to the conduction band and the band gap narrows. Decreasing the \({{E}_{{\text{g}}}}\) value increases the electronic and lithium-ion conductivity of \({\text{m}}- {\text{LTO}}- {\text{M}}\) supercells.
期刊介绍:
Russian Microelectronics covers physical, technological, and some VLSI and ULSI circuit-technical aspects of microelectronics and nanoelectronics; it informs the reader of new trends in submicron optical, x-ray, electron, and ion-beam lithography technology; dry processing techniques, etching, doping; and deposition and planarization technology. Significant space is devoted to problems arising in the application of proton, electron, and ion beams, plasma, etc. Consideration is given to new equipment, including cluster tools and control in situ and submicron CMOS, bipolar, and BICMOS technologies. The journal publishes papers addressing problems of molecular beam epitaxy and related processes; heterojunction devices and integrated circuits; the technology and devices of nanoelectronics; and the fabrication of nanometer scale devices, including new device structures, quantum-effect devices, and superconducting devices. The reader will find papers containing news of the diagnostics of surfaces and microelectronic structures, the modeling of technological processes and devices in micro- and nanoelectronics, including nanotransistors, and solid state qubits.