用量子优化控制方法生成 BEC 之间的非最大纠缠态

Q4 Engineering Russian Microelectronics Pub Date : 2024-03-21 DOI:10.1134/s1063739723600553
I. D. Lazarev, A. N. Pyrkov
{"title":"用量子优化控制方法生成 BEC 之间的非最大纠缠态","authors":"I. D. Lazarev, A. N. Pyrkov","doi":"10.1134/s1063739723600553","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p>In the last decade, different theoretical methods for entanglement generation between distant BEC qubits (macroscopic cold atomic ensembles) were proposed. However, experimental realization of such states is still challenging beside some special cases. The most theoretically investigated entangled states between macroscopic BECs are nonmaximally entangled states obtained with <span>\\(SzSz\\)</span> entangling Hamiltonian. With the use of such states, the protocols for quantum teleportation, remote state preporation and many others were developed for macroscopic qubits on the basis of BECs. Here we show that it is possible to obtain such states with the use of the bosonic analog of <span>\\(XY\\)</span> Hamiltonian and the methods of quantum optimal control. We compare performance of this scheme in the meaning of fidelity and entanglement for different drift and control Hamiltonians. We use the well-established QuTip open python library for all calculations.</p>","PeriodicalId":21534,"journal":{"name":"Russian Microelectronics","volume":"14 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Generation of Nonmaximally Entangled States between BECs with Quantum Optimal Control Methods\",\"authors\":\"I. D. Lazarev, A. N. Pyrkov\",\"doi\":\"10.1134/s1063739723600553\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3 data-test=\\\"abstract-sub-heading\\\">Abstract</h3><p>In the last decade, different theoretical methods for entanglement generation between distant BEC qubits (macroscopic cold atomic ensembles) were proposed. However, experimental realization of such states is still challenging beside some special cases. The most theoretically investigated entangled states between macroscopic BECs are nonmaximally entangled states obtained with <span>\\\\(SzSz\\\\)</span> entangling Hamiltonian. With the use of such states, the protocols for quantum teleportation, remote state preporation and many others were developed for macroscopic qubits on the basis of BECs. Here we show that it is possible to obtain such states with the use of the bosonic analog of <span>\\\\(XY\\\\)</span> Hamiltonian and the methods of quantum optimal control. We compare performance of this scheme in the meaning of fidelity and entanglement for different drift and control Hamiltonians. We use the well-established QuTip open python library for all calculations.</p>\",\"PeriodicalId\":21534,\"journal\":{\"name\":\"Russian Microelectronics\",\"volume\":\"14 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-03-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Russian Microelectronics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1134/s1063739723600553\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Russian Microelectronics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1134/s1063739723600553","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

摘要

摘要 在过去十年中,人们提出了在遥远的 BEC 量子位(宏观冷原子团)之间产生纠缠的不同理论方法。然而,除了一些特殊情况外,在实验中实现这种状态仍然具有挑战性。理论上研究最多的宏观BEC之间的纠缠态是用(SzSz)纠缠哈密顿得到的非最大纠缠态。利用这种态,人们在 BEC 的基础上为宏观量子比特开发了量子远距传输、远程状态预并入等协议。在这里,我们展示了利用玻色类似的(XY\ )哈密顿和量子最优控制方法获得这种状态的可能性。我们比较了该方案在不同漂移和控制哈密顿的保真度和纠缠度方面的性能。我们使用成熟的 QuTip 开放式 python 库进行所有计算。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Generation of Nonmaximally Entangled States between BECs with Quantum Optimal Control Methods

Abstract

In the last decade, different theoretical methods for entanglement generation between distant BEC qubits (macroscopic cold atomic ensembles) were proposed. However, experimental realization of such states is still challenging beside some special cases. The most theoretically investigated entangled states between macroscopic BECs are nonmaximally entangled states obtained with \(SzSz\) entangling Hamiltonian. With the use of such states, the protocols for quantum teleportation, remote state preporation and many others were developed for macroscopic qubits on the basis of BECs. Here we show that it is possible to obtain such states with the use of the bosonic analog of \(XY\) Hamiltonian and the methods of quantum optimal control. We compare performance of this scheme in the meaning of fidelity and entanglement for different drift and control Hamiltonians. We use the well-established QuTip open python library for all calculations.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Russian Microelectronics
Russian Microelectronics Materials Science-Materials Chemistry
CiteScore
0.70
自引率
0.00%
发文量
43
期刊介绍: Russian Microelectronics  covers physical, technological, and some VLSI and ULSI circuit-technical aspects of microelectronics and nanoelectronics; it informs the reader of new trends in submicron optical, x-ray, electron, and ion-beam lithography technology; dry processing techniques, etching, doping; and deposition and planarization technology. Significant space is devoted to problems arising in the application of proton, electron, and ion beams, plasma, etc. Consideration is given to new equipment, including cluster tools and control in situ and submicron CMOS, bipolar, and BICMOS technologies. The journal publishes papers addressing problems of molecular beam epitaxy and related processes; heterojunction devices and integrated circuits; the technology and devices of nanoelectronics; and the fabrication of nanometer scale devices, including new device structures, quantum-effect devices, and superconducting devices. The reader will find papers containing news of the diagnostics of surfaces and microelectronic structures, the modeling of technological processes and devices in micro- and nanoelectronics, including nanotransistors, and solid state qubits.
期刊最新文献
A Comprehensive Study of Nonuniformity Properties of the LiCoO2 Thin-Film Cathode Fabricated by RF Sputtering Structure and Formation of Superflash Nonvolatile Memory Cells Influence of Laser Radiation on Functional Properties MOS Device Structures Simulation of Silicon Field-Effect Conical GAA Nanotransistors with a Stacked SiO2/HfO2 Subgate Dielectric Influence of Hydrogen Additive on Electrophysical Parameters and Emission Spectra of Tetrafluoromethane Plasma
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1