通过铜配位丝光处理调节水与纤维素之间的相互作用,实现水动形状记忆纤维素水塑料

IF 17.3 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Matter Pub Date : 2024-05-15 DOI:10.1016/j.matt.2024.04.033
Zhi Zeng, Le Yu, Shanchen Yang, Kunkun Guo, Chao Xu, Chaoji Chen, Zhaohui Wang
{"title":"通过铜配位丝光处理调节水与纤维素之间的相互作用,实现水动形状记忆纤维素水塑料","authors":"Zhi Zeng, Le Yu, Shanchen Yang, Kunkun Guo, Chao Xu, Chaoji Chen, Zhaohui Wang","doi":"10.1016/j.matt.2024.04.033","DOIUrl":null,"url":null,"abstract":"<p>Innovative biopolymers emulating natural organisms’ reversible water-induced deformations hold great potential across various domains. Here, we create a biopolymer that unifies actuation, hydrosetting, and shape-memory capabilities through copper-coordinated mercerization of nanocellulose paper. This method transforms the inherently hydrophilic, porous nanocellulose network into a compact amphiphilic membrane, distinguished by Cu<sup>2+</sup>-crosslinked hydrophobic domains acting as tough “net points,” ensuring exceptional water stability and ultrahigh wet mechanical performance (94.9 MPa and 3.50 GPa). Upon hydration, the membrane swiftly establishes reversible hydrogen-bonding “switches,” enabling a rapid plastic-elastic transition. The interplay between the net points and switches resolves the inherent trade-off between rapid, reversible hydrogen-bonding networks and mechanical robustness in cellulosic materials, thereby facilitating remarkable water-induced actuation, hydrosetting, and shape memory. Notably, the membrane demonstrates complex morphing and swift recovery in water, serving as a smart encrypted information carrier. Our study offers a molecular structural engineering paradigm for the rational design of advanced responsive materials.</p>","PeriodicalId":388,"journal":{"name":"Matter","volume":null,"pages":null},"PeriodicalIF":17.3000,"publicationDate":"2024-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Tuning water-cellulose interactions via copper-coordinated mercerization for hydro-actuated, shape-memory cellulosic hydroplastics\",\"authors\":\"Zhi Zeng, Le Yu, Shanchen Yang, Kunkun Guo, Chao Xu, Chaoji Chen, Zhaohui Wang\",\"doi\":\"10.1016/j.matt.2024.04.033\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Innovative biopolymers emulating natural organisms’ reversible water-induced deformations hold great potential across various domains. Here, we create a biopolymer that unifies actuation, hydrosetting, and shape-memory capabilities through copper-coordinated mercerization of nanocellulose paper. This method transforms the inherently hydrophilic, porous nanocellulose network into a compact amphiphilic membrane, distinguished by Cu<sup>2+</sup>-crosslinked hydrophobic domains acting as tough “net points,” ensuring exceptional water stability and ultrahigh wet mechanical performance (94.9 MPa and 3.50 GPa). Upon hydration, the membrane swiftly establishes reversible hydrogen-bonding “switches,” enabling a rapid plastic-elastic transition. The interplay between the net points and switches resolves the inherent trade-off between rapid, reversible hydrogen-bonding networks and mechanical robustness in cellulosic materials, thereby facilitating remarkable water-induced actuation, hydrosetting, and shape memory. Notably, the membrane demonstrates complex morphing and swift recovery in water, serving as a smart encrypted information carrier. Our study offers a molecular structural engineering paradigm for the rational design of advanced responsive materials.</p>\",\"PeriodicalId\":388,\"journal\":{\"name\":\"Matter\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":17.3000,\"publicationDate\":\"2024-05-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Matter\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1016/j.matt.2024.04.033\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Matter","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.matt.2024.04.033","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

仿效自然生物的可逆水诱导变形的创新生物聚合物在各个领域都具有巨大潜力。在这里,我们通过对纳米纤维素纸进行铜配位丝光处理,创造出了一种集驱动、水凝和形状记忆功能于一体的生物聚合物。这种方法将固有的亲水性多孔纳米纤维素网络转变成了一种紧凑的两亲膜,其特点是Cu2+交联的疏水域可作为坚韧的 "网点",确保了优异的水稳定性和超高的湿机械性能(94.9 兆帕和 3.50 千兆帕)。水化时,薄膜会迅速建立可逆的氢键 "开关",实现快速的塑性-弹性转换。网点和开关之间的相互作用解决了纤维素材料中快速、可逆氢键网络和机械坚固性之间固有的权衡问题,从而促进了显著的水诱导致动、水凝和形状记忆。值得注意的是,这层膜在水中具有复杂的变形和快速恢复能力,可作为智能加密信息载体。我们的研究为合理设计先进的响应材料提供了分子结构工程范例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Tuning water-cellulose interactions via copper-coordinated mercerization for hydro-actuated, shape-memory cellulosic hydroplastics

Innovative biopolymers emulating natural organisms’ reversible water-induced deformations hold great potential across various domains. Here, we create a biopolymer that unifies actuation, hydrosetting, and shape-memory capabilities through copper-coordinated mercerization of nanocellulose paper. This method transforms the inherently hydrophilic, porous nanocellulose network into a compact amphiphilic membrane, distinguished by Cu2+-crosslinked hydrophobic domains acting as tough “net points,” ensuring exceptional water stability and ultrahigh wet mechanical performance (94.9 MPa and 3.50 GPa). Upon hydration, the membrane swiftly establishes reversible hydrogen-bonding “switches,” enabling a rapid plastic-elastic transition. The interplay between the net points and switches resolves the inherent trade-off between rapid, reversible hydrogen-bonding networks and mechanical robustness in cellulosic materials, thereby facilitating remarkable water-induced actuation, hydrosetting, and shape memory. Notably, the membrane demonstrates complex morphing and swift recovery in water, serving as a smart encrypted information carrier. Our study offers a molecular structural engineering paradigm for the rational design of advanced responsive materials.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Matter
Matter MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
26.30
自引率
2.60%
发文量
367
期刊介绍: Matter, a monthly journal affiliated with Cell, spans the broad field of materials science from nano to macro levels,covering fundamentals to applications. Embracing groundbreaking technologies,it includes full-length research articles,reviews, perspectives,previews, opinions, personnel stories, and general editorial content. Matter aims to be the primary resource for researchers in academia and industry, inspiring the next generation of materials scientists.
期刊最新文献
Sp-hybridized carbon enabled crystal lattice manipulation, pushing the limit of fill factor in β-CsPbI3 perovskite solar cells Overcoming thermal energy storage density limits by liquid water recharge in zeolite-polymer composites Open aerosol microfluidics enable orthogonal compartmentalized functionalization of hydrogel particles Discovery of a novel low-cost medium-entropy stainless steel with exceptional mechanical behavior over a wide temperature range Unlocking lithium ion conduction in lithium metal fluorides
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1