利用应变工程定制单层 ReS2 的电子和光学特性

IF 2.7 Q2 PHYSICS, CONDENSED MATTER Micro and Nanostructures Pub Date : 2024-05-22 DOI:10.1016/j.micrna.2024.207873
Priyanka , Ritu , Vinod Kumar , Ramesh Kumar , Fakir Chand
{"title":"利用应变工程定制单层 ReS2 的电子和光学特性","authors":"Priyanka ,&nbsp;Ritu ,&nbsp;Vinod Kumar ,&nbsp;Ramesh Kumar ,&nbsp;Fakir Chand","doi":"10.1016/j.micrna.2024.207873","DOIUrl":null,"url":null,"abstract":"<div><p>In the present work, impact of various mechanical strains on the optoelectronic properties of monolayer ReS<sub>2</sub> (<em>m</em>-ReS<sub>2</sub>) are investigated by using density functional theory. The bandgap of monolayer is determined to be 1.44 eV and 1.31 eV when computed using PBE and PBE + SOC methods. The monolayer displays outstanding electronic and optical tunability under biaxial compressive and shear strains. Under strain variations of 0 %–8 %, the bandgap for biaxial compression varies from 1.44 eV (1.31 eV) to 0.54 eV (0 eV), whereas for shear xx-yy strains, it varies from 1.44 eV (1.31 eV) to 0.34 eV (0.28 eV) when calculated using PBE (PBE + SOC) methods. A semiconductor-to-metal transition is observed for higher values of biaxial compressive strain. A pronounced impact of strain on the optical characteristics is likewise observed. We noticed that the absorption edge of monolayer ReS<sub>2</sub> shifts from 1.32 eV to 0.50 eV with a 0 %–8 % increase in biaxial compression, leading to an 11 % red shift in wavelength per 1 % strain change. Moreover, high optical absorption (5 × 10<sup>5</sup> cm<sup>−1</sup>), lying from infrared to UV region is observed. The present study points out that strain engineering can be an efficient tool for modifying both the electronic and optical properties of <em>m</em>-ReS<sub>2</sub> and may open new avenues for using this material in future optoelectronic applications.</p></div>","PeriodicalId":100923,"journal":{"name":"Micro and Nanostructures","volume":null,"pages":null},"PeriodicalIF":2.7000,"publicationDate":"2024-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Tailoring the electronic and optical properties of ReS2 monolayer using strain engineering\",\"authors\":\"Priyanka ,&nbsp;Ritu ,&nbsp;Vinod Kumar ,&nbsp;Ramesh Kumar ,&nbsp;Fakir Chand\",\"doi\":\"10.1016/j.micrna.2024.207873\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In the present work, impact of various mechanical strains on the optoelectronic properties of monolayer ReS<sub>2</sub> (<em>m</em>-ReS<sub>2</sub>) are investigated by using density functional theory. The bandgap of monolayer is determined to be 1.44 eV and 1.31 eV when computed using PBE and PBE + SOC methods. The monolayer displays outstanding electronic and optical tunability under biaxial compressive and shear strains. Under strain variations of 0 %–8 %, the bandgap for biaxial compression varies from 1.44 eV (1.31 eV) to 0.54 eV (0 eV), whereas for shear xx-yy strains, it varies from 1.44 eV (1.31 eV) to 0.34 eV (0.28 eV) when calculated using PBE (PBE + SOC) methods. A semiconductor-to-metal transition is observed for higher values of biaxial compressive strain. A pronounced impact of strain on the optical characteristics is likewise observed. We noticed that the absorption edge of monolayer ReS<sub>2</sub> shifts from 1.32 eV to 0.50 eV with a 0 %–8 % increase in biaxial compression, leading to an 11 % red shift in wavelength per 1 % strain change. Moreover, high optical absorption (5 × 10<sup>5</sup> cm<sup>−1</sup>), lying from infrared to UV region is observed. The present study points out that strain engineering can be an efficient tool for modifying both the electronic and optical properties of <em>m</em>-ReS<sub>2</sub> and may open new avenues for using this material in future optoelectronic applications.</p></div>\",\"PeriodicalId\":100923,\"journal\":{\"name\":\"Micro and Nanostructures\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-05-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Micro and Nanostructures\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2773012324001225\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, CONDENSED MATTER\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Micro and Nanostructures","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2773012324001225","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
引用次数: 0

摘要

本研究利用密度泛函理论研究了各种机械应变对单层 ReS2(m-ReS2)光电特性的影响。使用 PBE 和 PBE + SOC 方法计算得出单层的带隙分别为 1.44 eV 和 1.31 eV。在双轴压缩和剪切应变下,单层薄膜显示出卓越的电子和光学可调性。在应变变化率为 0%-8% 的情况下,双轴压缩带隙从 1.44 eV (1.31 eV) 到 0.54 eV (0eV),而在 xx-yy 剪切应变下,使用 PBE(PBE + SOC)方法计算的带隙从 1.44 eV (1.31 eV) 到 0.34 eV (0.28 eV)。双轴压缩应变值越高,半导体向金属的转变越明显。同样,我们还观察到应变对光学特性的明显影响。我们注意到,当双轴压缩率增加 0%-8% 时,单层 ReS2 的吸收边沿会从 1.32 eV 移至 0.50 eV,每 1% 的应变变化会导致 11% 的波长红移。此外,还观察到从红外线到紫外线区域的高光学吸收(5 × 105 cm-1)。本研究指出,应变工程是改变 m-ReS2 电子和光学特性的有效工具,并可能为这种材料在未来光电应用中的使用开辟新途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Tailoring the electronic and optical properties of ReS2 monolayer using strain engineering

In the present work, impact of various mechanical strains on the optoelectronic properties of monolayer ReS2 (m-ReS2) are investigated by using density functional theory. The bandgap of monolayer is determined to be 1.44 eV and 1.31 eV when computed using PBE and PBE + SOC methods. The monolayer displays outstanding electronic and optical tunability under biaxial compressive and shear strains. Under strain variations of 0 %–8 %, the bandgap for biaxial compression varies from 1.44 eV (1.31 eV) to 0.54 eV (0 eV), whereas for shear xx-yy strains, it varies from 1.44 eV (1.31 eV) to 0.34 eV (0.28 eV) when calculated using PBE (PBE + SOC) methods. A semiconductor-to-metal transition is observed for higher values of biaxial compressive strain. A pronounced impact of strain on the optical characteristics is likewise observed. We noticed that the absorption edge of monolayer ReS2 shifts from 1.32 eV to 0.50 eV with a 0 %–8 % increase in biaxial compression, leading to an 11 % red shift in wavelength per 1 % strain change. Moreover, high optical absorption (5 × 105 cm−1), lying from infrared to UV region is observed. The present study points out that strain engineering can be an efficient tool for modifying both the electronic and optical properties of m-ReS2 and may open new avenues for using this material in future optoelectronic applications.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.50
自引率
0.00%
发文量
0
期刊最新文献
Investigation of Optical Interconnects for nano-scale VLSI applications Enhancing TFET performance through gate length optimization and doping control in phosphorene nanoribbons A novel nanoscale FD-SOI MOSFET with energy barrier and heat-sink engineering for enhanced electric field uniformity First principles study of the electronic structure and Li-ion diffusion properties of co-doped LIFex-1MxPyNy-1O4 (M=Co/Mn, NS/Si) Li-ion battery cathode materials Metamaterial structure design based on genetic algorithm and phase change material GST for multispectral camouflage
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1