{"title":"DTDO:利用磁共振成像进行脑肿瘤分类的深度学习方法(Driving Training Development Optimization enabled deep learning approach for brain tumour classification using MRI)。","authors":"Vadamodula Prasad, Issac Diana Jeba Jingle, Gopalsamy Venkadakrishnan Sriramakrishnan","doi":"10.1080/0954898X.2024.2351159","DOIUrl":null,"url":null,"abstract":"<p><p>A brain tumour is an abnormal mass of tissue. Brain tumours vary in size, from tiny to large. Moreover, they display variations in location, shape, and size, which add complexity to their detection. The accurate delineation of tumour regions poses a challenge due to their irregular boundaries. In this research, these issues are overcome by introducing the DTDO-ZFNet for detection of brain tumour. The input Magnetic Resonance Imaging (MRI) image is fed to the pre-processing stage. Tumour areas are segmented by utilizing SegNet in which the factors of SegNet are biased using DTDO. The image augmentation is carried out using eminent techniques, such as geometric transformation and colour space transformation. Here, features such as GIST descriptor, PCA-NGIST, statistical feature and Haralick features, SLBT feature, and CNN features are extricated. Finally, the categorization of the tumour is accomplished based on ZFNet, which is trained by utilizing DTDO. The devised DTDO is a consolidation of DTBO and CDDO. The comparison of proposed DTDO-ZFNet with the existing methods, which results in highest accuracy of 0.944, a positive predictive value (PPV) of 0.936, a true positive rate (TPR) of 0.939, a negative predictive value (NPV) of 0.937, and a minimal false-negative rate (FNR) of 0.061%.</p>","PeriodicalId":54735,"journal":{"name":"Network-Computation in Neural Systems","volume":" ","pages":"520-561"},"PeriodicalIF":1.1000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"DTDO: Driving Training Development Optimization enabled deep learning approach for brain tumour classification using MRI.\",\"authors\":\"Vadamodula Prasad, Issac Diana Jeba Jingle, Gopalsamy Venkadakrishnan Sriramakrishnan\",\"doi\":\"10.1080/0954898X.2024.2351159\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>A brain tumour is an abnormal mass of tissue. Brain tumours vary in size, from tiny to large. Moreover, they display variations in location, shape, and size, which add complexity to their detection. The accurate delineation of tumour regions poses a challenge due to their irregular boundaries. In this research, these issues are overcome by introducing the DTDO-ZFNet for detection of brain tumour. The input Magnetic Resonance Imaging (MRI) image is fed to the pre-processing stage. Tumour areas are segmented by utilizing SegNet in which the factors of SegNet are biased using DTDO. The image augmentation is carried out using eminent techniques, such as geometric transformation and colour space transformation. Here, features such as GIST descriptor, PCA-NGIST, statistical feature and Haralick features, SLBT feature, and CNN features are extricated. Finally, the categorization of the tumour is accomplished based on ZFNet, which is trained by utilizing DTDO. The devised DTDO is a consolidation of DTBO and CDDO. The comparison of proposed DTDO-ZFNet with the existing methods, which results in highest accuracy of 0.944, a positive predictive value (PPV) of 0.936, a true positive rate (TPR) of 0.939, a negative predictive value (NPV) of 0.937, and a minimal false-negative rate (FNR) of 0.061%.</p>\",\"PeriodicalId\":54735,\"journal\":{\"name\":\"Network-Computation in Neural Systems\",\"volume\":\" \",\"pages\":\"520-561\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Network-Computation in Neural Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1080/0954898X.2024.2351159\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/5/27 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Network-Computation in Neural Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1080/0954898X.2024.2351159","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/5/27 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
DTDO: Driving Training Development Optimization enabled deep learning approach for brain tumour classification using MRI.
A brain tumour is an abnormal mass of tissue. Brain tumours vary in size, from tiny to large. Moreover, they display variations in location, shape, and size, which add complexity to their detection. The accurate delineation of tumour regions poses a challenge due to their irregular boundaries. In this research, these issues are overcome by introducing the DTDO-ZFNet for detection of brain tumour. The input Magnetic Resonance Imaging (MRI) image is fed to the pre-processing stage. Tumour areas are segmented by utilizing SegNet in which the factors of SegNet are biased using DTDO. The image augmentation is carried out using eminent techniques, such as geometric transformation and colour space transformation. Here, features such as GIST descriptor, PCA-NGIST, statistical feature and Haralick features, SLBT feature, and CNN features are extricated. Finally, the categorization of the tumour is accomplished based on ZFNet, which is trained by utilizing DTDO. The devised DTDO is a consolidation of DTBO and CDDO. The comparison of proposed DTDO-ZFNet with the existing methods, which results in highest accuracy of 0.944, a positive predictive value (PPV) of 0.936, a true positive rate (TPR) of 0.939, a negative predictive value (NPV) of 0.937, and a minimal false-negative rate (FNR) of 0.061%.
期刊介绍:
Network: Computation in Neural Systems welcomes submissions of research papers that integrate theoretical neuroscience with experimental data, emphasizing the utilization of cutting-edge technologies. We invite authors and researchers to contribute their work in the following areas:
Theoretical Neuroscience: This section encompasses neural network modeling approaches that elucidate brain function.
Neural Networks in Data Analysis and Pattern Recognition: We encourage submissions exploring the use of neural networks for data analysis and pattern recognition, including but not limited to image analysis and speech processing applications.
Neural Networks in Control Systems: This category encompasses the utilization of neural networks in control systems, including robotics, state estimation, fault detection, and diagnosis.
Analysis of Neurophysiological Data: We invite submissions focusing on the analysis of neurophysiology data obtained from experimental studies involving animals.
Analysis of Experimental Data on the Human Brain: This section includes papers analyzing experimental data from studies on the human brain, utilizing imaging techniques such as MRI, fMRI, EEG, and PET.
Neurobiological Foundations of Consciousness: We encourage submissions exploring the neural bases of consciousness in the brain and its simulation in machines.