无序状态多组分半导体中的原子扩散建模

Q4 Engineering Russian Microelectronics Pub Date : 2024-06-04 DOI:10.1134/s1063739724600092
S. M. Asadov
{"title":"无序状态多组分半导体中的原子扩散建模","authors":"S. M. Asadov","doi":"10.1134/s1063739724600092","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p>Density functional theory (DFT) using the generalized gradient approximation (GGA) made it possible to optimize the crystal structure, calculate the lattice parameters and band structure of <span>\\({\\text{TlM}}{{{\\text{S}}}_{2}}~\\)</span>(M = Ga, In) semiconductor compounds with a monoclinic structure (space group <span>\\(C2{\\text{/}}c\\)</span>, no. 15). DFT calculations of the structure of compounds were expanded using two exchange-correlation functionals GGA-PBE and GGA + <span>\\(U\\)</span> (<i>U</i> is the Coulomb parameter) with a value of <span>\\(U - J\\)</span> = 2.1 eV (effective interaction parameter). Thermal diffusion coefficients (<span>\\({{D}_{\\alpha }}\\)</span>) of atoms of individual types (α), i.e. atoms of thallium, gallium, indium and sulfur near the melting point of the <span>\\({\\text{TlM}}{{{\\text{S}}}_{2}}\\)</span> compound were calculated by the molecular dynamics (MD) method. The <span>\\({{D}_{\\alpha }}\\)</span> values of <span>\\({\\text{TlM}}{{{\\text{S}}}_{2}}\\)</span> atoms were obtained in the local neutrality approximation using the canonical <span>\\(NVT\\)</span> MD ensemble. The <span>\\({{D}_{\\alpha }}\\)</span> values of the atoms were corrected to take into account the root-mean-square displacements of the atoms at a given time and temperature. The dependences <span>\\({{D}_{\\alpha }} = ~f(1{\\text{/}}T)\\)</span> of <span>\\({\\text{TlM}}{{{\\text{S}}}_{2}}\\)</span> atoms, described by the Arrhenius law, were constructed. The activation energy of atomic diffusion was calculated.</p>","PeriodicalId":21534,"journal":{"name":"Russian Microelectronics","volume":"7 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Modeling the Diffusion of Atoms in Multicomponent Semiconductors in a Disordered State\",\"authors\":\"S. M. Asadov\",\"doi\":\"10.1134/s1063739724600092\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3 data-test=\\\"abstract-sub-heading\\\">Abstract</h3><p>Density functional theory (DFT) using the generalized gradient approximation (GGA) made it possible to optimize the crystal structure, calculate the lattice parameters and band structure of <span>\\\\({\\\\text{TlM}}{{{\\\\text{S}}}_{2}}~\\\\)</span>(M = Ga, In) semiconductor compounds with a monoclinic structure (space group <span>\\\\(C2{\\\\text{/}}c\\\\)</span>, no. 15). DFT calculations of the structure of compounds were expanded using two exchange-correlation functionals GGA-PBE and GGA + <span>\\\\(U\\\\)</span> (<i>U</i> is the Coulomb parameter) with a value of <span>\\\\(U - J\\\\)</span> = 2.1 eV (effective interaction parameter). Thermal diffusion coefficients (<span>\\\\({{D}_{\\\\alpha }}\\\\)</span>) of atoms of individual types (α), i.e. atoms of thallium, gallium, indium and sulfur near the melting point of the <span>\\\\({\\\\text{TlM}}{{{\\\\text{S}}}_{2}}\\\\)</span> compound were calculated by the molecular dynamics (MD) method. The <span>\\\\({{D}_{\\\\alpha }}\\\\)</span> values of <span>\\\\({\\\\text{TlM}}{{{\\\\text{S}}}_{2}}\\\\)</span> atoms were obtained in the local neutrality approximation using the canonical <span>\\\\(NVT\\\\)</span> MD ensemble. The <span>\\\\({{D}_{\\\\alpha }}\\\\)</span> values of the atoms were corrected to take into account the root-mean-square displacements of the atoms at a given time and temperature. The dependences <span>\\\\({{D}_{\\\\alpha }} = ~f(1{\\\\text{/}}T)\\\\)</span> of <span>\\\\({\\\\text{TlM}}{{{\\\\text{S}}}_{2}}\\\\)</span> atoms, described by the Arrhenius law, were constructed. The activation energy of atomic diffusion was calculated.</p>\",\"PeriodicalId\":21534,\"journal\":{\"name\":\"Russian Microelectronics\",\"volume\":\"7 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Russian Microelectronics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1134/s1063739724600092\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Russian Microelectronics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1134/s1063739724600092","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

摘要

摘要 使用广义梯度近似(GGA)的密度泛函理论(DFT)可以优化晶体结构,计算具有单斜结构(空间群\(C2{\{text{/}c\),15号)的\({text{TlM}}{{{\text{S}}}_{2}}~\)(M = Ga, In)半导体化合物的晶格参数和能带结构。)化合物结构的 DFT 计算使用两种交换相关函数 GGA-PBE 和 GGA + \(U\)(U 为库仑参数)进行扩展,其值为\(U - J\) = 2.1 eV(有效相互作用参数)。通过分子动力学(MD)方法计算了各个类型原子(α)的热扩散系数(\({{D}_{\α }}\) ),即铊、镓、铟和硫原子在 \({\text{TlM}}{{text{S}}}_{2}}\) 化合物熔点附近的热扩散系数(\({{D}_{\α }}\) )。原子的({{D}_{\alpha }})值是在局部中性近似条件下,使用典型的(NVT)MD 集合得到的。原子的\({{D}_{\alpha }}\) 值经过校正,以考虑原子在给定时间和温度下的均方根位移。构建了阿伦尼乌斯定律所描述的 \({{D}_{\alpha }} = ~f(1{text{/}}T)\) 原子的依赖性(\({text{TlM}}{{text{S}}}_{2}}\)。计算了原子扩散的活化能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Modeling the Diffusion of Atoms in Multicomponent Semiconductors in a Disordered State

Abstract

Density functional theory (DFT) using the generalized gradient approximation (GGA) made it possible to optimize the crystal structure, calculate the lattice parameters and band structure of \({\text{TlM}}{{{\text{S}}}_{2}}~\)(M = Ga, In) semiconductor compounds with a monoclinic structure (space group \(C2{\text{/}}c\), no. 15). DFT calculations of the structure of compounds were expanded using two exchange-correlation functionals GGA-PBE and GGA + \(U\) (U is the Coulomb parameter) with a value of \(U - J\) = 2.1 eV (effective interaction parameter). Thermal diffusion coefficients (\({{D}_{\alpha }}\)) of atoms of individual types (α), i.e. atoms of thallium, gallium, indium and sulfur near the melting point of the \({\text{TlM}}{{{\text{S}}}_{2}}\) compound were calculated by the molecular dynamics (MD) method. The \({{D}_{\alpha }}\) values of \({\text{TlM}}{{{\text{S}}}_{2}}\) atoms were obtained in the local neutrality approximation using the canonical \(NVT\) MD ensemble. The \({{D}_{\alpha }}\) values of the atoms were corrected to take into account the root-mean-square displacements of the atoms at a given time and temperature. The dependences \({{D}_{\alpha }} = ~f(1{\text{/}}T)\) of \({\text{TlM}}{{{\text{S}}}_{2}}\) atoms, described by the Arrhenius law, were constructed. The activation energy of atomic diffusion was calculated.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Russian Microelectronics
Russian Microelectronics Materials Science-Materials Chemistry
CiteScore
0.70
自引率
0.00%
发文量
43
期刊介绍: Russian Microelectronics  covers physical, technological, and some VLSI and ULSI circuit-technical aspects of microelectronics and nanoelectronics; it informs the reader of new trends in submicron optical, x-ray, electron, and ion-beam lithography technology; dry processing techniques, etching, doping; and deposition and planarization technology. Significant space is devoted to problems arising in the application of proton, electron, and ion beams, plasma, etc. Consideration is given to new equipment, including cluster tools and control in situ and submicron CMOS, bipolar, and BICMOS technologies. The journal publishes papers addressing problems of molecular beam epitaxy and related processes; heterojunction devices and integrated circuits; the technology and devices of nanoelectronics; and the fabrication of nanometer scale devices, including new device structures, quantum-effect devices, and superconducting devices. The reader will find papers containing news of the diagnostics of surfaces and microelectronic structures, the modeling of technological processes and devices in micro- and nanoelectronics, including nanotransistors, and solid state qubits.
期刊最新文献
A Comprehensive Study of Nonuniformity Properties of the LiCoO2 Thin-Film Cathode Fabricated by RF Sputtering Structure and Formation of Superflash Nonvolatile Memory Cells Influence of Laser Radiation on Functional Properties MOS Device Structures Simulation of Silicon Field-Effect Conical GAA Nanotransistors with a Stacked SiO2/HfO2 Subgate Dielectric Influence of Hydrogen Additive on Electrophysical Parameters and Emission Spectra of Tetrafluoromethane Plasma
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1