Cyphos IL102/Solvesso 100 利用基于伪乳液的条带分散膜操作对铬(VI)进行非分散萃取

IF 3.3 4区 工程技术 Q2 CHEMISTRY, PHYSICAL Membranes Pub Date : 2024-06-04 DOI:10.3390/membranes14060129
Francisco José Alguacil
{"title":"Cyphos IL102/Solvesso 100 利用基于伪乳液的条带分散膜操作对铬(VI)进行非分散萃取","authors":"Francisco José Alguacil","doi":"10.3390/membranes14060129","DOIUrl":null,"url":null,"abstract":"The removal of chromium(VI) from an acidic (HCl) medium through non-dispersive extraction with strip dispersion (NDXSD) was investigated using a microporous PVDF membrane support in a permeation cell. The ionic liquid Cyphos IL102 (phosphonium salt) in Solvesso 100 was used as an organic phase. In NDXSD, the stripping phase (NaOH) is dispersed in the organic phase on the cell side with an impeller stirrer adequate to form a strip dispersion. This pseudo-emulsion phase (organic + strip solutions) provides a constant supply of the Cyphos IL102/Solvesso 100 to the membrane phase. Various hydrodynamic and chemical parameters, such as variation in the feed and pseudo-emulsion stirring speeds, HCl and Cr(VI) concentrations in the feed phase, and carrier concentration, were investigated. Results indicated that the best chromium(VI) transport was obtained under the following conditions: feed and pseudo-emulsion stirring speeds of 1000 min−1 and 600 min−1, respectively; an HCl concentration in the feed phase of 0.1 M; a chromium concentration of 0.01 g/L in the same phase; and carrier concentration in the organic phase in the 2–5–10% v/v range. From the experimental data, several mass transfer coefficients were estimated: a bulk diffusion coefficient of 3.1·10−7 cm2/s and a diffusion coefficient of 6.1·10−8 cm2/s in the membrane phase and mass transfer coefficients in the feed (5.7·10−3 cm/s) and membrane phases (2.9·10−6 cm/s). The performance of the present system against other ionic liquids and the presence of base metals in the feed phase were investigated.","PeriodicalId":18410,"journal":{"name":"Membranes","volume":null,"pages":null},"PeriodicalIF":3.3000,"publicationDate":"2024-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Non-Dispersive Extraction of Chromium(VI) by Cyphos IL102/Solvesso 100 Using the Pseudo-Emulsion-Based Strip Dispersion Membrane Operation\",\"authors\":\"Francisco José Alguacil\",\"doi\":\"10.3390/membranes14060129\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The removal of chromium(VI) from an acidic (HCl) medium through non-dispersive extraction with strip dispersion (NDXSD) was investigated using a microporous PVDF membrane support in a permeation cell. The ionic liquid Cyphos IL102 (phosphonium salt) in Solvesso 100 was used as an organic phase. In NDXSD, the stripping phase (NaOH) is dispersed in the organic phase on the cell side with an impeller stirrer adequate to form a strip dispersion. This pseudo-emulsion phase (organic + strip solutions) provides a constant supply of the Cyphos IL102/Solvesso 100 to the membrane phase. Various hydrodynamic and chemical parameters, such as variation in the feed and pseudo-emulsion stirring speeds, HCl and Cr(VI) concentrations in the feed phase, and carrier concentration, were investigated. Results indicated that the best chromium(VI) transport was obtained under the following conditions: feed and pseudo-emulsion stirring speeds of 1000 min−1 and 600 min−1, respectively; an HCl concentration in the feed phase of 0.1 M; a chromium concentration of 0.01 g/L in the same phase; and carrier concentration in the organic phase in the 2–5–10% v/v range. From the experimental data, several mass transfer coefficients were estimated: a bulk diffusion coefficient of 3.1·10−7 cm2/s and a diffusion coefficient of 6.1·10−8 cm2/s in the membrane phase and mass transfer coefficients in the feed (5.7·10−3 cm/s) and membrane phases (2.9·10−6 cm/s). The performance of the present system against other ionic liquids and the presence of base metals in the feed phase were investigated.\",\"PeriodicalId\":18410,\"journal\":{\"name\":\"Membranes\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2024-06-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Membranes\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3390/membranes14060129\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Membranes","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/membranes14060129","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

研究人员使用渗透池中的微孔聚偏二氟乙烯(PVDF)膜载体,通过条带分散非分散萃取(NDXSD)技术从酸性(盐酸)介质中去除铬(VI)。Solvesso 100 中的离子液体 Cyphos IL102(鏻盐)被用作有机相。在 NDXSD 中,汽提相(NaOH)通过叶轮搅拌器充分分散在池侧的有机相中,形成条状分散体。这种假乳相(有机溶液+条状溶液)可向膜相持续供应 Cyphos IL102/Solvesso 100。研究了各种流体力学和化学参数,如进料和假乳液搅拌速度的变化、进料相中的盐酸和六(七)铬浓度以及载体浓度。结果表明,在以下条件下,铬(VI)的迁移效果最佳:料相和假乳液搅拌速度分别为 1000 min-1 和 600 min-1;料相中盐酸浓度为 0.1 M;同相中铬浓度为 0.01 g/L;有机相中载体浓度在 2-5-10% v/v 范围内。根据实验数据估算出了几个传质系数:膜相中的体积扩散系数为 3.1-10-7 cm2/s,扩散系数为 6.1-10-8 cm2/s;进料(5.7-10-3 cm/s)和膜相(2.9-10-6 cm/s)中的传质系数。研究了本系统与其他离子液体的性能以及进料相中碱金属的存在情况。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Non-Dispersive Extraction of Chromium(VI) by Cyphos IL102/Solvesso 100 Using the Pseudo-Emulsion-Based Strip Dispersion Membrane Operation
The removal of chromium(VI) from an acidic (HCl) medium through non-dispersive extraction with strip dispersion (NDXSD) was investigated using a microporous PVDF membrane support in a permeation cell. The ionic liquid Cyphos IL102 (phosphonium salt) in Solvesso 100 was used as an organic phase. In NDXSD, the stripping phase (NaOH) is dispersed in the organic phase on the cell side with an impeller stirrer adequate to form a strip dispersion. This pseudo-emulsion phase (organic + strip solutions) provides a constant supply of the Cyphos IL102/Solvesso 100 to the membrane phase. Various hydrodynamic and chemical parameters, such as variation in the feed and pseudo-emulsion stirring speeds, HCl and Cr(VI) concentrations in the feed phase, and carrier concentration, were investigated. Results indicated that the best chromium(VI) transport was obtained under the following conditions: feed and pseudo-emulsion stirring speeds of 1000 min−1 and 600 min−1, respectively; an HCl concentration in the feed phase of 0.1 M; a chromium concentration of 0.01 g/L in the same phase; and carrier concentration in the organic phase in the 2–5–10% v/v range. From the experimental data, several mass transfer coefficients were estimated: a bulk diffusion coefficient of 3.1·10−7 cm2/s and a diffusion coefficient of 6.1·10−8 cm2/s in the membrane phase and mass transfer coefficients in the feed (5.7·10−3 cm/s) and membrane phases (2.9·10−6 cm/s). The performance of the present system against other ionic liquids and the presence of base metals in the feed phase were investigated.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Membranes
Membranes Chemical Engineering-Filtration and Separation
CiteScore
6.10
自引率
16.70%
发文量
1071
审稿时长
11 weeks
期刊介绍: Membranes (ISSN 2077-0375) is an international, peer-reviewed open access journal of separation science and technology. It publishes reviews, research articles, communications and technical notes. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. Full experimental and/or methodical details must be provided.
期刊最新文献
The Application of TiO2/ZrO2-Modified Nanocomposite PES Membrane for Improved Permeability of Textile Dye in Water. Computational Fluid Dynamics Modelling of Hydrogen Production via Water Splitting in Oxygen Membrane Reactors. Fouling of Reverse Osmosis (RO) and Nanofiltration (NF) Membranes by Low Molecular Weight Organic Compounds (LMWOCs), Part 1: Fundamentals and Mechanism. The Influence of Cholesterol on Membrane Targeted Bioactive Peptides: Modulating Peptide Activity Through Changes in Bilayer Biophysical Properties. Cell Type-Specific Anti- and Pro-Oxidative Effects of Punica granatum L. Ellagitannins.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1