工蜂偶尔和持续接触食物中的乙醇会缩短其寿命。

IF 1.7 3区 生物学 Q4 PHYSIOLOGY Journal of Comparative Physiology B-Biochemical Systems and Environmental Physiology Pub Date : 2024-08-01 Epub Date: 2024-06-17 DOI:10.1007/s00360-024-01571-3
Monika Ostap-Chec, Daniel Bajorek, Weronika Antoł, Daniel Stec, Krzysztof Miler
{"title":"工蜂偶尔和持续接触食物中的乙醇会缩短其寿命。","authors":"Monika Ostap-Chec, Daniel Bajorek, Weronika Antoł, Daniel Stec, Krzysztof Miler","doi":"10.1007/s00360-024-01571-3","DOIUrl":null,"url":null,"abstract":"<p><p>Honey bees (Apis mellifera) are one of the most crucial pollinators, providing vital ecosystem services. Their development and functioning depend on essential nutrients and substances found in the environment. While collecting nectar as a vital carbohydrate source, bees routinely encounter low doses of ethanol from yeast fermentation. Yet, the effects of repeated ethanol exposure on bees' survival and physiology remain poorly understood. Here, we investigate the impacts of constant and occasional consumption of food spiked with 1% ethanol on honey bee mortality and alcohol dehydrogenase (ADH) activity. This ethanol concentration might be tentatively judged close to that in natural conditions. We conducted an experiment in which bees were exposed to three types of long-term diets: constant sugar solution (control group that simulated conditions of no access to ethanol), sugar solution spiked with ethanol every third day (that simulated occasional, infrequent exposure to ethanol) and daily ethanol consumption (simulating constant, routine exposure to ethanol). The results revealed that both constant and occasional ethanol consumption increased the mortality of bees, but only after several days. These mortality rates rose with the frequency of ethanol intake. The ADH activity remained similar in bees from all groups. Our findings indicate that exposure of bees to ethanol carries harmful effects that accumulate over time. Further research is needed to pinpoint the exact ethanol doses ingested with food and exposure frequency in bees in natural conditions.</p>","PeriodicalId":56033,"journal":{"name":"Journal of Comparative Physiology B-Biochemical Systems and Environmental Physiology","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11316692/pdf/","citationCount":"0","resultStr":"{\"title\":\"Occasional and constant exposure to dietary ethanol shortens the lifespan of worker honey bees.\",\"authors\":\"Monika Ostap-Chec, Daniel Bajorek, Weronika Antoł, Daniel Stec, Krzysztof Miler\",\"doi\":\"10.1007/s00360-024-01571-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Honey bees (Apis mellifera) are one of the most crucial pollinators, providing vital ecosystem services. Their development and functioning depend on essential nutrients and substances found in the environment. While collecting nectar as a vital carbohydrate source, bees routinely encounter low doses of ethanol from yeast fermentation. Yet, the effects of repeated ethanol exposure on bees' survival and physiology remain poorly understood. Here, we investigate the impacts of constant and occasional consumption of food spiked with 1% ethanol on honey bee mortality and alcohol dehydrogenase (ADH) activity. This ethanol concentration might be tentatively judged close to that in natural conditions. We conducted an experiment in which bees were exposed to three types of long-term diets: constant sugar solution (control group that simulated conditions of no access to ethanol), sugar solution spiked with ethanol every third day (that simulated occasional, infrequent exposure to ethanol) and daily ethanol consumption (simulating constant, routine exposure to ethanol). The results revealed that both constant and occasional ethanol consumption increased the mortality of bees, but only after several days. These mortality rates rose with the frequency of ethanol intake. The ADH activity remained similar in bees from all groups. Our findings indicate that exposure of bees to ethanol carries harmful effects that accumulate over time. Further research is needed to pinpoint the exact ethanol doses ingested with food and exposure frequency in bees in natural conditions.</p>\",\"PeriodicalId\":56033,\"journal\":{\"name\":\"Journal of Comparative Physiology B-Biochemical Systems and Environmental Physiology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11316692/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Comparative Physiology B-Biochemical Systems and Environmental Physiology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s00360-024-01571-3\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/6/17 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q4\",\"JCRName\":\"PHYSIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Comparative Physiology B-Biochemical Systems and Environmental Physiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s00360-024-01571-3","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/6/17 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"PHYSIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

蜜蜂(Apis mellifera)是最重要的授粉者之一,为生态系统提供重要的服务。蜜蜂的发育和功能依赖于环境中的必需营养和物质。蜜蜂在采集作为重要碳水化合物来源的花蜜时,经常会遇到酵母发酵产生的低剂量乙醇。然而,反复接触乙醇对蜜蜂生存和生理的影响仍然鲜为人知。在这里,我们研究了持续或偶尔食用添加了1%乙醇的食物对蜜蜂死亡率和酒精脱氢酶(ADH)活性的影响。这个乙醇浓度可初步判断为接近自然条件下的浓度。我们进行了一项实验,让蜜蜂长期接触三种类型的食物:恒定的糖溶液(对照组,模拟不接触乙醇的条件)、每隔三天添加乙醇的糖溶液(模拟偶尔、不经常接触乙醇的条件)和每天食用乙醇(模拟持续、经常接触乙醇的条件)。结果显示,持续和偶尔摄入乙醇都会增加蜜蜂的死亡率,但都是在几天之后。死亡率随着摄入乙醇频率的增加而上升。各组蜜蜂的 ADH 活性保持相似。我们的研究结果表明,蜜蜂接触乙醇会产生有害影响,并随着时间的推移而累积。还需要进一步的研究来确定蜜蜂在自然条件下摄入乙醇的确切剂量和接触频率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Occasional and constant exposure to dietary ethanol shortens the lifespan of worker honey bees.

Honey bees (Apis mellifera) are one of the most crucial pollinators, providing vital ecosystem services. Their development and functioning depend on essential nutrients and substances found in the environment. While collecting nectar as a vital carbohydrate source, bees routinely encounter low doses of ethanol from yeast fermentation. Yet, the effects of repeated ethanol exposure on bees' survival and physiology remain poorly understood. Here, we investigate the impacts of constant and occasional consumption of food spiked with 1% ethanol on honey bee mortality and alcohol dehydrogenase (ADH) activity. This ethanol concentration might be tentatively judged close to that in natural conditions. We conducted an experiment in which bees were exposed to three types of long-term diets: constant sugar solution (control group that simulated conditions of no access to ethanol), sugar solution spiked with ethanol every third day (that simulated occasional, infrequent exposure to ethanol) and daily ethanol consumption (simulating constant, routine exposure to ethanol). The results revealed that both constant and occasional ethanol consumption increased the mortality of bees, but only after several days. These mortality rates rose with the frequency of ethanol intake. The ADH activity remained similar in bees from all groups. Our findings indicate that exposure of bees to ethanol carries harmful effects that accumulate over time. Further research is needed to pinpoint the exact ethanol doses ingested with food and exposure frequency in bees in natural conditions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.90
自引率
0.00%
发文量
51
审稿时长
3.5 months
期刊介绍: The Journal of Comparative Physiology B publishes peer-reviewed original articles and reviews on the comparative physiology of invertebrate and vertebrate animals. Special emphasis is placed on integrative studies that elucidate mechanisms at the whole-animal, organ, tissue, cellular and/or molecular levels. Review papers report on the current state of knowledge in an area of comparative physiology, and directions in which future research is needed.
期刊最新文献
Whether hypoxia tolerance improved after short-term fasting is closely related to phylogeny but not to foraging mode in freshwater fish species. The multifunctional fish gill. The effects of dissolved organic carbon and model compounds (DOC analogues) on diffusive water flux, oxygen consumption, nitrogenous waste excretion rates and gill transepithelial potential in Pacific sanddab (Citharichthys sordidus) at two salinities. Microbial urea-nitrogen recycling in arctic ground squirrels: the effect of ambient temperature of hibernation. Effects of in ovo supplementation of selenium (Se) and zinc (zn) on hatchability and production performance of broiler chickens.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1