{"title":"具有分离弹性结构的三维光纤布拉格光栅腕力传感器","authors":"Shizheng Sun, Ke Pang, Chao Liao, Jingtong Yu","doi":"10.1108/sr-09-2023-0429","DOIUrl":null,"url":null,"abstract":"\nPurpose\nThe use of a force sensor to estimate the external force of manipulator not only needs to deal with the signal noise of the sensor itself but also needs to solve the coupling interference of the sensor itself, especially the axial force. The purpose of this paper is to develop a three-dimensional fiber Bragg grating (FBG) wrist force sensor, which has a simple structure and reduces the coupling influence between several axes.\n\n\nDesign/methodology/approach\nA particular separation elastic structure with four FBGs is devised for the three-axial force sensor. One FBG is suspended on the profile of central cylinder and the other three FBGs are pasted on the elastic beam surface of the over and under measuring bodies, respectively. Finite element analysis (FEA) simulation has been implemented to the strain distribution characteristics, the output characteristics of each direction and the coupling effects of the structure. Furthermore, theoretical derivation and experimental results are used to compare, which have a good consistency.\n\n\nFindings\nThe experiment results show that the maximum repeatability error of the sensor is 6.75%, the maximum nonlinear error is 5.36%, the maximum coupling interference is 4.73% and the minimum sensitivity is 1.58 pm/N.\n\n\nOriginality/value\nA three-dimensional force sensor based on FBG adopts a particular separation elastic structure. The sensor can reduce the coupling influence between several axes, especially the coupling interference in the z-direction is 0.\n","PeriodicalId":49540,"journal":{"name":"Sensor Review","volume":null,"pages":null},"PeriodicalIF":1.6000,"publicationDate":"2024-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A three-dimensional fiber Bragg grating wrist force sensor with separation elastic structure\",\"authors\":\"Shizheng Sun, Ke Pang, Chao Liao, Jingtong Yu\",\"doi\":\"10.1108/sr-09-2023-0429\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\nPurpose\\nThe use of a force sensor to estimate the external force of manipulator not only needs to deal with the signal noise of the sensor itself but also needs to solve the coupling interference of the sensor itself, especially the axial force. The purpose of this paper is to develop a three-dimensional fiber Bragg grating (FBG) wrist force sensor, which has a simple structure and reduces the coupling influence between several axes.\\n\\n\\nDesign/methodology/approach\\nA particular separation elastic structure with four FBGs is devised for the three-axial force sensor. One FBG is suspended on the profile of central cylinder and the other three FBGs are pasted on the elastic beam surface of the over and under measuring bodies, respectively. Finite element analysis (FEA) simulation has been implemented to the strain distribution characteristics, the output characteristics of each direction and the coupling effects of the structure. Furthermore, theoretical derivation and experimental results are used to compare, which have a good consistency.\\n\\n\\nFindings\\nThe experiment results show that the maximum repeatability error of the sensor is 6.75%, the maximum nonlinear error is 5.36%, the maximum coupling interference is 4.73% and the minimum sensitivity is 1.58 pm/N.\\n\\n\\nOriginality/value\\nA three-dimensional force sensor based on FBG adopts a particular separation elastic structure. The sensor can reduce the coupling influence between several axes, especially the coupling interference in the z-direction is 0.\\n\",\"PeriodicalId\":49540,\"journal\":{\"name\":\"Sensor Review\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2024-06-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sensor Review\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1108/sr-09-2023-0429\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"INSTRUMENTS & INSTRUMENTATION\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sensor Review","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1108/sr-09-2023-0429","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"INSTRUMENTS & INSTRUMENTATION","Score":null,"Total":0}
A three-dimensional fiber Bragg grating wrist force sensor with separation elastic structure
Purpose
The use of a force sensor to estimate the external force of manipulator not only needs to deal with the signal noise of the sensor itself but also needs to solve the coupling interference of the sensor itself, especially the axial force. The purpose of this paper is to develop a three-dimensional fiber Bragg grating (FBG) wrist force sensor, which has a simple structure and reduces the coupling influence between several axes.
Design/methodology/approach
A particular separation elastic structure with four FBGs is devised for the three-axial force sensor. One FBG is suspended on the profile of central cylinder and the other three FBGs are pasted on the elastic beam surface of the over and under measuring bodies, respectively. Finite element analysis (FEA) simulation has been implemented to the strain distribution characteristics, the output characteristics of each direction and the coupling effects of the structure. Furthermore, theoretical derivation and experimental results are used to compare, which have a good consistency.
Findings
The experiment results show that the maximum repeatability error of the sensor is 6.75%, the maximum nonlinear error is 5.36%, the maximum coupling interference is 4.73% and the minimum sensitivity is 1.58 pm/N.
Originality/value
A three-dimensional force sensor based on FBG adopts a particular separation elastic structure. The sensor can reduce the coupling influence between several axes, especially the coupling interference in the z-direction is 0.
期刊介绍:
Sensor Review publishes peer reviewed state-of-the-art articles and specially commissioned technology reviews. Each issue of this multidisciplinary journal includes high quality original content covering all aspects of sensors and their applications, and reflecting the most interesting and strategically important research and development activities from around the world. Because of this, readers can stay at the very forefront of high technology sensor developments.
Emphasis is placed on detailed independent regular and review articles identifying the full range of sensors currently available for specific applications, as well as highlighting those areas of technology showing great potential for the future. The journal encourages authors to consider the practical and social implications of their articles.
All articles undergo a rigorous double-blind peer review process which involves an initial assessment of suitability of an article for the journal followed by sending it to, at least two reviewers in the field if deemed suitable.
Sensor Review’s coverage includes, but is not restricted to:
Mechanical sensors – position, displacement, proximity, velocity, acceleration, vibration, force, torque, pressure, and flow sensors
Electric and magnetic sensors – resistance, inductive, capacitive, piezoelectric, eddy-current, electromagnetic, photoelectric, and thermoelectric sensors
Temperature sensors, infrared sensors, humidity sensors
Optical, electro-optical and fibre-optic sensors and systems, photonic sensors
Biosensors, wearable and implantable sensors and systems, immunosensors
Gas and chemical sensors and systems, polymer sensors
Acoustic and ultrasonic sensors
Haptic sensors and devices
Smart and intelligent sensors and systems
Nanosensors, NEMS, MEMS, and BioMEMS
Quantum sensors
Sensor systems: sensor data fusion, signals, processing and interfacing, signal conditioning.