{"title":"通过闪焦耳加热超快合成用于高速率和低温钠离子存储的硬碳","authors":"Mengyue Yuan, Shunzhi Yu, Kefeng Wang, Changhuan Mi, Laifa Shen","doi":"10.1016/j.ssi.2024.116622","DOIUrl":null,"url":null,"abstract":"<div><p>Developing effective strategies to promote the sodium-ion storage performance of hard carbon anodes is essential for its practical application in sodium-ion batteries. The carbonization process plays a crucial role in regulating the microstructure of hard carbon. Conventional carbonization methods of slow-heating have hit a bottleneck in structural controls of hard carbon materials. Herein, hard carbon with high-rate and low-temperature sodium storage capability is ultrafast synthesized by flash Joule heating. Compared to the hard carbon synthesized by conventional slow-heating, the hard carbon synthesized by flash Joule heating has smaller particle size, larger interlayer spacing, and larger closed-pores leading to superior performance. This work provides a simple and effective method of boosting sodium-ion storage performance for hard carbon materials.</p></div>","PeriodicalId":431,"journal":{"name":"Solid State Ionics","volume":"414 ","pages":"Article 116622"},"PeriodicalIF":3.0000,"publicationDate":"2024-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ultrafast synthesis of hard carbon for high-rate and low-temperature sodium-ion storage through flash Joule heating\",\"authors\":\"Mengyue Yuan, Shunzhi Yu, Kefeng Wang, Changhuan Mi, Laifa Shen\",\"doi\":\"10.1016/j.ssi.2024.116622\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Developing effective strategies to promote the sodium-ion storage performance of hard carbon anodes is essential for its practical application in sodium-ion batteries. The carbonization process plays a crucial role in regulating the microstructure of hard carbon. Conventional carbonization methods of slow-heating have hit a bottleneck in structural controls of hard carbon materials. Herein, hard carbon with high-rate and low-temperature sodium storage capability is ultrafast synthesized by flash Joule heating. Compared to the hard carbon synthesized by conventional slow-heating, the hard carbon synthesized by flash Joule heating has smaller particle size, larger interlayer spacing, and larger closed-pores leading to superior performance. This work provides a simple and effective method of boosting sodium-ion storage performance for hard carbon materials.</p></div>\",\"PeriodicalId\":431,\"journal\":{\"name\":\"Solid State Ionics\",\"volume\":\"414 \",\"pages\":\"Article 116622\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-06-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Solid State Ionics\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S016727382400170X\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solid State Ionics","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S016727382400170X","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Ultrafast synthesis of hard carbon for high-rate and low-temperature sodium-ion storage through flash Joule heating
Developing effective strategies to promote the sodium-ion storage performance of hard carbon anodes is essential for its practical application in sodium-ion batteries. The carbonization process plays a crucial role in regulating the microstructure of hard carbon. Conventional carbonization methods of slow-heating have hit a bottleneck in structural controls of hard carbon materials. Herein, hard carbon with high-rate and low-temperature sodium storage capability is ultrafast synthesized by flash Joule heating. Compared to the hard carbon synthesized by conventional slow-heating, the hard carbon synthesized by flash Joule heating has smaller particle size, larger interlayer spacing, and larger closed-pores leading to superior performance. This work provides a simple and effective method of boosting sodium-ion storage performance for hard carbon materials.
期刊介绍:
This interdisciplinary journal is devoted to the physics, chemistry and materials science of diffusion, mass transport, and reactivity of solids. The major part of each issue is devoted to articles on:
(i) physics and chemistry of defects in solids;
(ii) reactions in and on solids, e.g. intercalation, corrosion, oxidation, sintering;
(iii) ion transport measurements, mechanisms and theory;
(iv) solid state electrochemistry;
(v) ionically-electronically mixed conducting solids.
Related technological applications are also included, provided their characteristics are interpreted in terms of the basic solid state properties.
Review papers and relevant symposium proceedings are welcome.