Hyewon Shim , Jun-Ho Park , Shinyoung Choi, Cheol-Joo Kim
{"title":"通过旋涂快速生长大尺寸有机单晶","authors":"Hyewon Shim , Jun-Ho Park , Shinyoung Choi, Cheol-Joo Kim","doi":"10.1016/j.cap.2024.06.016","DOIUrl":null,"url":null,"abstract":"<div><p>Spin-coating stands out as one of the fastest and simplest processes for material solidification. While it is commonly employed for producing polycrystalline thin films, recent endeavors have explored its potential for epitaxial growth, albeit primarily limited to inorganic materials. In this study, we demonstrate the spin-coating method enabling the rapid growth of large-sized organic single crystals (OSCs). Within 2 h, we successfully obtained OSCs with controlled lateral sizes of up to 2 mm, which conventionally takes several weeks using slow solvent evaporation. Raman mapping and UV–Vis absorption measurements confirmed the growths of the OSCs. We propose the growth mechanism by using the supersaturated dynamic fluid model. Furthermore, we demonstrate the device integration of these OSCs for charge-transfer complex channel, revealing ambipolar behavior during gate sweep. This innovative OSCs production method has the potential to advance the various field of science and electronics, traditionally hindered by the scarcity of adequately sized OSCs.</p></div>","PeriodicalId":11037,"journal":{"name":"Current Applied Physics","volume":"66 ","pages":"Pages 60-65"},"PeriodicalIF":2.4000,"publicationDate":"2024-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fast growth of large-sized organic single crystals via spin coating\",\"authors\":\"Hyewon Shim , Jun-Ho Park , Shinyoung Choi, Cheol-Joo Kim\",\"doi\":\"10.1016/j.cap.2024.06.016\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Spin-coating stands out as one of the fastest and simplest processes for material solidification. While it is commonly employed for producing polycrystalline thin films, recent endeavors have explored its potential for epitaxial growth, albeit primarily limited to inorganic materials. In this study, we demonstrate the spin-coating method enabling the rapid growth of large-sized organic single crystals (OSCs). Within 2 h, we successfully obtained OSCs with controlled lateral sizes of up to 2 mm, which conventionally takes several weeks using slow solvent evaporation. Raman mapping and UV–Vis absorption measurements confirmed the growths of the OSCs. We propose the growth mechanism by using the supersaturated dynamic fluid model. Furthermore, we demonstrate the device integration of these OSCs for charge-transfer complex channel, revealing ambipolar behavior during gate sweep. This innovative OSCs production method has the potential to advance the various field of science and electronics, traditionally hindered by the scarcity of adequately sized OSCs.</p></div>\",\"PeriodicalId\":11037,\"journal\":{\"name\":\"Current Applied Physics\",\"volume\":\"66 \",\"pages\":\"Pages 60-65\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-06-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Applied Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1567173924001482\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Applied Physics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1567173924001482","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Fast growth of large-sized organic single crystals via spin coating
Spin-coating stands out as one of the fastest and simplest processes for material solidification. While it is commonly employed for producing polycrystalline thin films, recent endeavors have explored its potential for epitaxial growth, albeit primarily limited to inorganic materials. In this study, we demonstrate the spin-coating method enabling the rapid growth of large-sized organic single crystals (OSCs). Within 2 h, we successfully obtained OSCs with controlled lateral sizes of up to 2 mm, which conventionally takes several weeks using slow solvent evaporation. Raman mapping and UV–Vis absorption measurements confirmed the growths of the OSCs. We propose the growth mechanism by using the supersaturated dynamic fluid model. Furthermore, we demonstrate the device integration of these OSCs for charge-transfer complex channel, revealing ambipolar behavior during gate sweep. This innovative OSCs production method has the potential to advance the various field of science and electronics, traditionally hindered by the scarcity of adequately sized OSCs.
期刊介绍:
Current Applied Physics (Curr. Appl. Phys.) is a monthly published international journal covering all the fields of applied science investigating the physics of the advanced materials for future applications.
Other areas covered: Experimental and theoretical aspects of advanced materials and devices dealing with synthesis or structural chemistry, physical and electronic properties, photonics, engineering applications, and uniquely pertinent measurement or analytical techniques.
Current Applied Physics, published since 2001, covers physics, chemistry and materials science, including bio-materials, with their engineering aspects. It is a truly interdisciplinary journal opening a forum for scientists of all related fields, a unique point of the journal discriminating it from other worldwide and/or Pacific Rim applied physics journals.
Regular research papers, letters and review articles with contents meeting the scope of the journal will be considered for publication after peer review.
The Journal is owned by the Korean Physical Society.