A. Shahriyari , Z. GolshanBafghi , M. Yousefizad , N. Manavizadeh , H. Pourfarzad , F. Ahaninpajooh , S. Samoodi
{"title":"增强低功耗电子设备的能量收集:旋转式三电纳米发电机中电极数量和独立层的影响研究","authors":"A. Shahriyari , Z. GolshanBafghi , M. Yousefizad , N. Manavizadeh , H. Pourfarzad , F. Ahaninpajooh , S. Samoodi","doi":"10.1016/j.cap.2024.06.015","DOIUrl":null,"url":null,"abstract":"<div><p>Herein, the rotary triboelectric nanogenerator (R-TENG) with a modified structure is simulated and fabricated to investigate the effect of changes on the geometric structure experimentally. The R-TENGs were fabricated using cost-effective and easily accessible dry-film lithography based on the PCB approach. This process which is explained step-by-step in detail in this paper, provides uniform electrode layers without using high-tech instruments, resulting in enhanced fabrication speed and electrical performance. R-TENGs with varying electrode and PTFE sector counts (32/16, 16/8, and 8/4) were fabricated and analyzed. At 1000 rpm, the output power of R-TENGs with 8, 16, and 32 electrodes demonstrated escalating output power with increasing electrode numbers: 6.82, 19.52, and 30.64 Wm<sup>-2</sup>, respectively. Simulation results corroborated the experimental findings, confirming that more electrodes and freestanding sectors yield superior power density and electrical generation. The 32-electrode, 16-sector R-TENG outperformed its counterparts, suggesting that strategic design alterations can significantly optimize energy harvesting in R-TENGs.</p></div>","PeriodicalId":11037,"journal":{"name":"Current Applied Physics","volume":"66 ","pages":"Pages 49-59"},"PeriodicalIF":2.4000,"publicationDate":"2024-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhancing energy harvesting for low-power electronics: A study on the impact of electrode number and freestanding layer in rotary triboelectric nanogenerator\",\"authors\":\"A. Shahriyari , Z. GolshanBafghi , M. Yousefizad , N. Manavizadeh , H. Pourfarzad , F. Ahaninpajooh , S. Samoodi\",\"doi\":\"10.1016/j.cap.2024.06.015\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Herein, the rotary triboelectric nanogenerator (R-TENG) with a modified structure is simulated and fabricated to investigate the effect of changes on the geometric structure experimentally. The R-TENGs were fabricated using cost-effective and easily accessible dry-film lithography based on the PCB approach. This process which is explained step-by-step in detail in this paper, provides uniform electrode layers without using high-tech instruments, resulting in enhanced fabrication speed and electrical performance. R-TENGs with varying electrode and PTFE sector counts (32/16, 16/8, and 8/4) were fabricated and analyzed. At 1000 rpm, the output power of R-TENGs with 8, 16, and 32 electrodes demonstrated escalating output power with increasing electrode numbers: 6.82, 19.52, and 30.64 Wm<sup>-2</sup>, respectively. Simulation results corroborated the experimental findings, confirming that more electrodes and freestanding sectors yield superior power density and electrical generation. The 32-electrode, 16-sector R-TENG outperformed its counterparts, suggesting that strategic design alterations can significantly optimize energy harvesting in R-TENGs.</p></div>\",\"PeriodicalId\":11037,\"journal\":{\"name\":\"Current Applied Physics\",\"volume\":\"66 \",\"pages\":\"Pages 49-59\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-06-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Applied Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1567173924001470\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Applied Physics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1567173924001470","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Enhancing energy harvesting for low-power electronics: A study on the impact of electrode number and freestanding layer in rotary triboelectric nanogenerator
Herein, the rotary triboelectric nanogenerator (R-TENG) with a modified structure is simulated and fabricated to investigate the effect of changes on the geometric structure experimentally. The R-TENGs were fabricated using cost-effective and easily accessible dry-film lithography based on the PCB approach. This process which is explained step-by-step in detail in this paper, provides uniform electrode layers without using high-tech instruments, resulting in enhanced fabrication speed and electrical performance. R-TENGs with varying electrode and PTFE sector counts (32/16, 16/8, and 8/4) were fabricated and analyzed. At 1000 rpm, the output power of R-TENGs with 8, 16, and 32 electrodes demonstrated escalating output power with increasing electrode numbers: 6.82, 19.52, and 30.64 Wm-2, respectively. Simulation results corroborated the experimental findings, confirming that more electrodes and freestanding sectors yield superior power density and electrical generation. The 32-electrode, 16-sector R-TENG outperformed its counterparts, suggesting that strategic design alterations can significantly optimize energy harvesting in R-TENGs.
期刊介绍:
Current Applied Physics (Curr. Appl. Phys.) is a monthly published international journal covering all the fields of applied science investigating the physics of the advanced materials for future applications.
Other areas covered: Experimental and theoretical aspects of advanced materials and devices dealing with synthesis or structural chemistry, physical and electronic properties, photonics, engineering applications, and uniquely pertinent measurement or analytical techniques.
Current Applied Physics, published since 2001, covers physics, chemistry and materials science, including bio-materials, with their engineering aspects. It is a truly interdisciplinary journal opening a forum for scientists of all related fields, a unique point of the journal discriminating it from other worldwide and/or Pacific Rim applied physics journals.
Regular research papers, letters and review articles with contents meeting the scope of the journal will be considered for publication after peer review.
The Journal is owned by the Korean Physical Society.