超越厄尔尼诺/南方涛动的大尺度环流和大气河流对美国冬季降水的影响

IF 4.8 2区 地球科学 Q1 METEOROLOGY & ATMOSPHERIC SCIENCES Journal of Climate Pub Date : 2024-06-18 DOI:10.1175/jcli-d-23-0723.1
Qinghua Ding, Hailan Wang
{"title":"超越厄尔尼诺/南方涛动的大尺度环流和大气河流对美国冬季降水的影响","authors":"Qinghua Ding, Hailan Wang","doi":"10.1175/jcli-d-23-0723.1","DOIUrl":null,"url":null,"abstract":"Abstract This study aims to understand the underlying mechanism of large scale circulation control on atmospheric rivers (AR) and precipitation variability across the Contiguous United States (CONUS) in winter. The El Niño-Southern Oscillation (ENSO), known as a key driver of global circulation, has shown a modest impact on CONUS precipitation, prompting us to focus our attention on other climate drivers. Here, we find that barotropic instability over the exit region of the North Pacific subtropical jet stream plays a critical role in forming a downstream stationary Rossby wave train during winter (referred to as the West Mode). This wave pattern influences CONUS precipitation by affecting AR activity and explains approximately 50% of rainfall changes in the Western US, as well as numerous extreme wet and drought years along the West Coast, such as the wet winter in 2022/23. Over the past eight decades, the West Mode exhibited limited sensitivity to both Sea Surface Temperature (SST) and increasing anthropogenic forcing and was more influential in shaping interannual and interdecadal CONUS precipitation variability than ENSO. This result may explain why ENSO alone can only account for a limited portion of CONUS precipitation variability, thereby imposing an inherent constraint on the precision of seasonal predictions of CONUS precipitation made by climate models. Due to the significance of the West Mode in governing precipitation variability over the Western US, winter precipitation in that region may possess some resilience to the effects of global warming in the coming decades, as supported by large ensemble simulations driven by projected radiative forcing.","PeriodicalId":15472,"journal":{"name":"Journal of Climate","volume":"12 1","pages":""},"PeriodicalIF":4.8000,"publicationDate":"2024-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Influences of large scale circulation and atmospheric rivers on US winter precipitation beyond ENSO\",\"authors\":\"Qinghua Ding, Hailan Wang\",\"doi\":\"10.1175/jcli-d-23-0723.1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract This study aims to understand the underlying mechanism of large scale circulation control on atmospheric rivers (AR) and precipitation variability across the Contiguous United States (CONUS) in winter. The El Niño-Southern Oscillation (ENSO), known as a key driver of global circulation, has shown a modest impact on CONUS precipitation, prompting us to focus our attention on other climate drivers. Here, we find that barotropic instability over the exit region of the North Pacific subtropical jet stream plays a critical role in forming a downstream stationary Rossby wave train during winter (referred to as the West Mode). This wave pattern influences CONUS precipitation by affecting AR activity and explains approximately 50% of rainfall changes in the Western US, as well as numerous extreme wet and drought years along the West Coast, such as the wet winter in 2022/23. Over the past eight decades, the West Mode exhibited limited sensitivity to both Sea Surface Temperature (SST) and increasing anthropogenic forcing and was more influential in shaping interannual and interdecadal CONUS precipitation variability than ENSO. This result may explain why ENSO alone can only account for a limited portion of CONUS precipitation variability, thereby imposing an inherent constraint on the precision of seasonal predictions of CONUS precipitation made by climate models. Due to the significance of the West Mode in governing precipitation variability over the Western US, winter precipitation in that region may possess some resilience to the effects of global warming in the coming decades, as supported by large ensemble simulations driven by projected radiative forcing.\",\"PeriodicalId\":15472,\"journal\":{\"name\":\"Journal of Climate\",\"volume\":\"12 1\",\"pages\":\"\"},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2024-06-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Climate\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1175/jcli-d-23-0723.1\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"METEOROLOGY & ATMOSPHERIC SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Climate","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1175/jcli-d-23-0723.1","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

摘要 本研究旨在了解大尺度环流对美国毗连地区(CONUS)冬季大气河流(AR)和降水变率控制的基本机制。众所周知,厄尔尼诺-南方涛动(ENSO)是全球环流的主要驱动因素,但它对美国大陆降水的影响不大,这促使我们将注意力集中在其他气候驱动因素上。在这里,我们发现北太平洋副热带喷流出口区域的气压不稳定性在冬季形成下游静止罗斯比波列(称为西模式)中发挥了关键作用。这种波浪模式通过影响 AR 活动来影响 CONUS 降水量,并解释了美国西部约 50% 的降雨量变化,以及西海岸的许多极端潮湿和干旱年份,如 2022/23 年的潮湿冬季。在过去的八十年中,西模式对海洋表面温度(SST)和不断增加的人为强迫的敏感性都很有限,与厄尔尼诺/南方涛动(ENSO)相比,西模式对形成美国西部降水年际和年代际变化的影响更大。这一结果可能解释了为什么厄尔尼诺/南方涛动只能解释 CONUS 降水变率的有限部分,从而对气候模式对 CONUS 降水的季节预测精度造成了内在限制。由于 "西部模式 "在控制美国西部降水变率方面的重要作用,该地区的冬季降水可能对未来几十年全球变暖的影响具有一定的抵御能力,预计辐射强迫驱动的大型集合模拟也证明了这一点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Influences of large scale circulation and atmospheric rivers on US winter precipitation beyond ENSO
Abstract This study aims to understand the underlying mechanism of large scale circulation control on atmospheric rivers (AR) and precipitation variability across the Contiguous United States (CONUS) in winter. The El Niño-Southern Oscillation (ENSO), known as a key driver of global circulation, has shown a modest impact on CONUS precipitation, prompting us to focus our attention on other climate drivers. Here, we find that barotropic instability over the exit region of the North Pacific subtropical jet stream plays a critical role in forming a downstream stationary Rossby wave train during winter (referred to as the West Mode). This wave pattern influences CONUS precipitation by affecting AR activity and explains approximately 50% of rainfall changes in the Western US, as well as numerous extreme wet and drought years along the West Coast, such as the wet winter in 2022/23. Over the past eight decades, the West Mode exhibited limited sensitivity to both Sea Surface Temperature (SST) and increasing anthropogenic forcing and was more influential in shaping interannual and interdecadal CONUS precipitation variability than ENSO. This result may explain why ENSO alone can only account for a limited portion of CONUS precipitation variability, thereby imposing an inherent constraint on the precision of seasonal predictions of CONUS precipitation made by climate models. Due to the significance of the West Mode in governing precipitation variability over the Western US, winter precipitation in that region may possess some resilience to the effects of global warming in the coming decades, as supported by large ensemble simulations driven by projected radiative forcing.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Climate
Journal of Climate 地学-气象与大气科学
CiteScore
9.30
自引率
14.30%
发文量
490
审稿时长
7.5 months
期刊介绍: The Journal of Climate (JCLI) (ISSN: 0894-8755; eISSN: 1520-0442) publishes research that advances basic understanding of the dynamics and physics of the climate system on large spatial scales, including variability of the atmosphere, oceans, land surface, and cryosphere; past, present, and projected future changes in the climate system; and climate simulation and prediction.
期刊最新文献
De Novo Design of Peptide Binders to Conformationally Diverse Targets with Contrastive Language Modeling. Future changes in the vertical structure of severe convective storm environments over the U.S. central Great Plains Impacts of Local and Remote SST Warming on Summer Circulation Changes in the Western North Pacific Future Changes of Extreme Precipitation and Related Atmospheric Conditions in East Asia under Global Warming Projected in Large Ensemble Climate Prediction Data PNA nonlinearity and ENSO transition asymmetry weaken PMM before La Niña onset
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1