基于改进型粒子群优化的新能源汽车动力电池综合测试技术

Q2 Energy Energy Informatics Pub Date : 2024-06-26 DOI:10.1186/s42162-024-00356-w
Hongxing Liu, Yi Liang
{"title":"基于改进型粒子群优化的新能源汽车动力电池综合测试技术","authors":"Hongxing Liu, Yi Liang","doi":"10.1186/s42162-024-00356-w","DOIUrl":null,"url":null,"abstract":"As the new energy industry continues to progress, the health management of power batteries has become the key to ensuring the performance and safety of automobiles. Therefore, accurately predicting battery capacity decline is particularly important. A battery capacity degradation prediction model combining unscented particle filtering, particle swarm optimization, and SVR is constructed. It optimizes regression parameters through the introduced optimization strategy. Unscented particle filtering is used to improve particle swarm optimization and battery detection model. The study tested four various models of lithium-ion batteries. The model predicted a mean square error of 0.0011 for battery 5, 0.0007 for battery 6, 0.0022 for battery 7, and 0.0013 for battery 18. In the prediction of different battery types, the mean square error of the NIMH battery was reduced by 0.0008 compared with the particle swarm optimization-support vector regression algorithm, and by 0.0005 compared with the unscented particle filtering-regression vector regression algorithm. The mean square error of lithium-iron phosphate battery was reduced by 0.0008 and 0.0004 respectively compared with comparison models. The mean square error value of lithium titanate battery was reduced by 0.0007 and 0.0003 respectively in the research model compared with comparison models. It improves the prediction accuracy in lithium-ion batteries. Its application in battery health management can provide important technical support for improving battery performance and extending service cycles. The proposed method can be used for battery monitoring and management of power grid energy storage system. By accurately predicting the capacity decline of battery, the operation strategy of energy storage system can be optimized to ensure the efficient operation and long life of the system. The battery management system can be used for drones and aviation equipment to predict battery health and capacity decline in real time, ensuring the safety and reliability of flight missions.","PeriodicalId":538,"journal":{"name":"Energy Informatics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Comprehensive testing technology for new energy vehicle power batteries based on improved particle swarm optimization\",\"authors\":\"Hongxing Liu, Yi Liang\",\"doi\":\"10.1186/s42162-024-00356-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"As the new energy industry continues to progress, the health management of power batteries has become the key to ensuring the performance and safety of automobiles. Therefore, accurately predicting battery capacity decline is particularly important. A battery capacity degradation prediction model combining unscented particle filtering, particle swarm optimization, and SVR is constructed. It optimizes regression parameters through the introduced optimization strategy. Unscented particle filtering is used to improve particle swarm optimization and battery detection model. The study tested four various models of lithium-ion batteries. The model predicted a mean square error of 0.0011 for battery 5, 0.0007 for battery 6, 0.0022 for battery 7, and 0.0013 for battery 18. In the prediction of different battery types, the mean square error of the NIMH battery was reduced by 0.0008 compared with the particle swarm optimization-support vector regression algorithm, and by 0.0005 compared with the unscented particle filtering-regression vector regression algorithm. The mean square error of lithium-iron phosphate battery was reduced by 0.0008 and 0.0004 respectively compared with comparison models. The mean square error value of lithium titanate battery was reduced by 0.0007 and 0.0003 respectively in the research model compared with comparison models. It improves the prediction accuracy in lithium-ion batteries. Its application in battery health management can provide important technical support for improving battery performance and extending service cycles. The proposed method can be used for battery monitoring and management of power grid energy storage system. By accurately predicting the capacity decline of battery, the operation strategy of energy storage system can be optimized to ensure the efficient operation and long life of the system. The battery management system can be used for drones and aviation equipment to predict battery health and capacity decline in real time, ensuring the safety and reliability of flight missions.\",\"PeriodicalId\":538,\"journal\":{\"name\":\"Energy Informatics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Energy Informatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1186/s42162-024-00356-w\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Energy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s42162-024-00356-w","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Energy","Score":null,"Total":0}
引用次数: 0

摘要

随着新能源产业的不断发展,动力电池的健康管理已成为确保汽车性能和安全的关键。因此,准确预测电池容量衰减显得尤为重要。本文结合无香精粒子滤波、粒子群优化和 SVR,构建了一个电池容量衰减预测模型。该模型通过引入的优化策略优化回归参数。无香料粒子滤波用于改进粒子群优化和电池检测模型。研究测试了四种不同的锂离子电池模型。该模型对 5 号电池的预测均方误差为 0.0011,对 6 号电池的预测均方误差为 0.0007,对 7 号电池的预测均方误差为 0.0022,对 18 号电池的预测均方误差为 0.0013。在不同类型电池的预测中,与粒子群优化-支持向量回归算法相比,镍氢电池的均方误差减少了 0.0008,与无香味粒子过滤-回归向量回归算法相比,镍氢电池的均方误差减少了 0.0005。与对比模型相比,磷酸铁锂电池的均方误差分别减少了 0.0008 和 0.0004。与对比模型相比,研究模型的钛酸锂电池均方误差值分别减少了 0.0007 和 0.0003。它提高了锂离子电池的预测精度。它在电池健康管理中的应用可为提高电池性能和延长使用周期提供重要的技术支持。所提出的方法可用于电网储能系统的电池监测和管理。通过准确预测电池容量的下降,可以优化储能系统的运行策略,确保系统的高效运行和长寿命。该电池管理系统可用于无人机和航空设备,实时预测电池健康状况和容量衰减,确保飞行任务的安全性和可靠性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Comprehensive testing technology for new energy vehicle power batteries based on improved particle swarm optimization
As the new energy industry continues to progress, the health management of power batteries has become the key to ensuring the performance and safety of automobiles. Therefore, accurately predicting battery capacity decline is particularly important. A battery capacity degradation prediction model combining unscented particle filtering, particle swarm optimization, and SVR is constructed. It optimizes regression parameters through the introduced optimization strategy. Unscented particle filtering is used to improve particle swarm optimization and battery detection model. The study tested four various models of lithium-ion batteries. The model predicted a mean square error of 0.0011 for battery 5, 0.0007 for battery 6, 0.0022 for battery 7, and 0.0013 for battery 18. In the prediction of different battery types, the mean square error of the NIMH battery was reduced by 0.0008 compared with the particle swarm optimization-support vector regression algorithm, and by 0.0005 compared with the unscented particle filtering-regression vector regression algorithm. The mean square error of lithium-iron phosphate battery was reduced by 0.0008 and 0.0004 respectively compared with comparison models. The mean square error value of lithium titanate battery was reduced by 0.0007 and 0.0003 respectively in the research model compared with comparison models. It improves the prediction accuracy in lithium-ion batteries. Its application in battery health management can provide important technical support for improving battery performance and extending service cycles. The proposed method can be used for battery monitoring and management of power grid energy storage system. By accurately predicting the capacity decline of battery, the operation strategy of energy storage system can be optimized to ensure the efficient operation and long life of the system. The battery management system can be used for drones and aviation equipment to predict battery health and capacity decline in real time, ensuring the safety and reliability of flight missions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Energy Informatics
Energy Informatics Computer Science-Computer Networks and Communications
CiteScore
5.50
自引率
0.00%
发文量
34
审稿时长
5 weeks
期刊最新文献
Electric vehicles, the future of transportation powered by machine learning: a brief review Optimization strategy of property energy management based on artificial intelligence Building energy consumption analysis and measures: a case study from an administration building in Chengdu, China The application of deep learning technology in integrated circuit design Simulation modeling for energy systems analysis: a critical review
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1