通过羟基离子化实现阻燃纤维素三电材料

IF 4.3 3区 工程技术 Q2 ENGINEERING, CHEMICAL Frontiers of Chemical Science and Engineering Pub Date : 2024-06-22 DOI:10.1007/s11705-024-2464-7
Xin Wang, Huancheng Huang, Fanchao Yu, Pinle Zhang, Xinliang Liu
{"title":"通过羟基离子化实现阻燃纤维素三电材料","authors":"Xin Wang,&nbsp;Huancheng Huang,&nbsp;Fanchao Yu,&nbsp;Pinle Zhang,&nbsp;Xinliang Liu","doi":"10.1007/s11705-024-2464-7","DOIUrl":null,"url":null,"abstract":"<div><p>Triboelectric nanogenerators (TENGs) are among the most promising available energy harvesting methods. Cellulose-based TENGs are flexible, renewable, and degradable. However, the flammability of cellulose prevents it from being used in open-flame environments. In this study, the lattice of cellulose was adjusted by the hydroxyl ionization of cellulose molecules, and Na<sup>+</sup> was introduced to enhance the flame retardancy of cellulose nanofibers (CNFs). The experimental results showed that the amount of hydrogen bonding between cellulose molecules increased with the introduction of Na<sup>+</sup> and that the limiting oxygen index reached 36.4%. The lattice spacing of cellulose increased from 0.276 to 0.286 nm, and the change in lattice structure exposed more hydroxyl groups, which changed the polarity of cellulose. The surface potential of the fibers increased from 239 to 323 mV, the maximum open-circuit voltage was 25 V·cm<sup>−2</sup>, the short-circuit current was 2.10 µA, and the output power density was 4.56 µW·cm<sup>−2</sup>. Compared with those of CNFs, the output voltage, current, and transferred charge increased by 96.8%, 517%, and 23%, respectively, and showed good stability and reliability during cyclic exposure. This study provides a valuable strategy for improving the performance of cellulose-based TENGs.</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":571,"journal":{"name":"Frontiers of Chemical Science and Engineering","volume":"18 10","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2024-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Flame-retardancy cellulosic triboelectric materials enabled by hydroxyl ionization\",\"authors\":\"Xin Wang,&nbsp;Huancheng Huang,&nbsp;Fanchao Yu,&nbsp;Pinle Zhang,&nbsp;Xinliang Liu\",\"doi\":\"10.1007/s11705-024-2464-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Triboelectric nanogenerators (TENGs) are among the most promising available energy harvesting methods. Cellulose-based TENGs are flexible, renewable, and degradable. However, the flammability of cellulose prevents it from being used in open-flame environments. In this study, the lattice of cellulose was adjusted by the hydroxyl ionization of cellulose molecules, and Na<sup>+</sup> was introduced to enhance the flame retardancy of cellulose nanofibers (CNFs). The experimental results showed that the amount of hydrogen bonding between cellulose molecules increased with the introduction of Na<sup>+</sup> and that the limiting oxygen index reached 36.4%. The lattice spacing of cellulose increased from 0.276 to 0.286 nm, and the change in lattice structure exposed more hydroxyl groups, which changed the polarity of cellulose. The surface potential of the fibers increased from 239 to 323 mV, the maximum open-circuit voltage was 25 V·cm<sup>−2</sup>, the short-circuit current was 2.10 µA, and the output power density was 4.56 µW·cm<sup>−2</sup>. Compared with those of CNFs, the output voltage, current, and transferred charge increased by 96.8%, 517%, and 23%, respectively, and showed good stability and reliability during cyclic exposure. This study provides a valuable strategy for improving the performance of cellulose-based TENGs.</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":571,\"journal\":{\"name\":\"Frontiers of Chemical Science and Engineering\",\"volume\":\"18 10\",\"pages\":\"\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-06-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers of Chemical Science and Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11705-024-2464-7\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers of Chemical Science and Engineering","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s11705-024-2464-7","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

摘要

三电纳米发电机(TENGs)是目前最有前途的能量收集方法之一。基于纤维素的 TENG 具有柔韧性、可再生性和可降解性。然而,纤维素的易燃性使其无法在明火环境中使用。本研究通过纤维素分子的羟基离子化来调整纤维素的晶格,并引入 Na+ 来增强纤维素纳米纤维(CNFs)的阻燃性。实验结果表明,随着 Na+ 的引入,纤维素分子间的氢键数量增加,极限氧指数达到 36.4%。纤维素的晶格间距从 0.276 纳米增加到 0.286 纳米,晶格结构的变化暴露了更多的羟基,从而改变了纤维素的极性。纤维的表面电位从 239 mV 上升到 323 mV,最大开路电压为 25 V-cm-2,短路电流为 2.10 µA,输出功率密度为 4.56 µW-cm-2。与 CNFs 相比,输出电压、电流和转移电荷分别增加了 96.8%、517% 和 23%,并且在循环暴露过程中表现出良好的稳定性和可靠性。这项研究为提高纤维素基 TENG 的性能提供了一种有价值的策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Flame-retardancy cellulosic triboelectric materials enabled by hydroxyl ionization

Triboelectric nanogenerators (TENGs) are among the most promising available energy harvesting methods. Cellulose-based TENGs are flexible, renewable, and degradable. However, the flammability of cellulose prevents it from being used in open-flame environments. In this study, the lattice of cellulose was adjusted by the hydroxyl ionization of cellulose molecules, and Na+ was introduced to enhance the flame retardancy of cellulose nanofibers (CNFs). The experimental results showed that the amount of hydrogen bonding between cellulose molecules increased with the introduction of Na+ and that the limiting oxygen index reached 36.4%. The lattice spacing of cellulose increased from 0.276 to 0.286 nm, and the change in lattice structure exposed more hydroxyl groups, which changed the polarity of cellulose. The surface potential of the fibers increased from 239 to 323 mV, the maximum open-circuit voltage was 25 V·cm−2, the short-circuit current was 2.10 µA, and the output power density was 4.56 µW·cm−2. Compared with those of CNFs, the output voltage, current, and transferred charge increased by 96.8%, 517%, and 23%, respectively, and showed good stability and reliability during cyclic exposure. This study provides a valuable strategy for improving the performance of cellulose-based TENGs.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.60
自引率
6.70%
发文量
868
审稿时长
1 months
期刊介绍: Frontiers of Chemical Science and Engineering presents the latest developments in chemical science and engineering, emphasizing emerging and multidisciplinary fields and international trends in research and development. The journal promotes communication and exchange between scientists all over the world. The contents include original reviews, research papers and short communications. Coverage includes catalysis and reaction engineering, clean energy, functional material, nanotechnology and nanoscience, biomaterials and biotechnology, particle technology and multiphase processing, separation science and technology, sustainable technologies and green processing.
期刊最新文献
Effective lateral dispersion of momentum, heat and mass in bubbling fluidized beds Reversible heat-set four-phase transitions of gel1-to-sol1-to-gel2-to-sol2 in binary hydrogels Investigating CO2 electro-reduction mechanisms: DFT insight into earth-abundant Mn diimine catalysts for CO2 conversions over hydrogen evolution reaction, feasibility, and selectivity considerations DFT insights into oxygen vacancy formation and chemical looping dry reforming of methane on metal-substituted CeO2 (111) surface Chemical recycling of polyolefin waste: from the perspective of efficient pyrolysis reactors
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1