{"title":"用于开放式超低场磁共振成像的均质 B0 线圈设计方法:模拟研究。","authors":"Tomohiro Karasawa , Jiro Saikawa , Tatsuya Munaka , Tetsuo Kobayashi","doi":"10.1016/j.mri.2024.07.006","DOIUrl":null,"url":null,"abstract":"<div><p>A multimodal brain function measurement system integrating functional magnetic resonance imaging (fMRI) and magnetoencephalography (MEG) is expected to be a tool that will provide new insights into neuroscience. To integrate fMRI and MEG, an ultra-low-field MRI (ULF-MRI) scanner that can generate a static magnetic field (B0) with an electromagnetic coil and turn off the B0 during MEG measurements is desirable. While electromagnetic B0 coil has the above advantages, it also has a trade-off between size and the broadness of the magnetic field homogeneity. In this study, we proposed a method for designing a B0 multi-stage circular coil arrangement that determines the number of coils required to maximize magnetic field homogeneity and minimize the total wiring length of the coils. The optimized multi-stage coil arrangement had an external shape of 600 mm in diameter and a maximum height of 600 mm, with an aperture of 600 mm in diameter and 300 mm in height. The magnetic field homogeneity was <100 ppm over a 210 mm diameter spherical volume (DSV). Compared to a previous two coil pairs arrangement with the same magnetic field homogeneity, the diameter was 1/1.9 times smaller, indicating that the newly designed B0 coil arrangement realized a smaller size and wider magnetic field homogeneity.</p></div>","PeriodicalId":18165,"journal":{"name":"Magnetic resonance imaging","volume":"112 ","pages":"Pages 128-135"},"PeriodicalIF":2.1000,"publicationDate":"2024-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Homogeneous B0 coil design method for open-access ultra-low field magnetic resonance imaging: A simulation study\",\"authors\":\"Tomohiro Karasawa , Jiro Saikawa , Tatsuya Munaka , Tetsuo Kobayashi\",\"doi\":\"10.1016/j.mri.2024.07.006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>A multimodal brain function measurement system integrating functional magnetic resonance imaging (fMRI) and magnetoencephalography (MEG) is expected to be a tool that will provide new insights into neuroscience. To integrate fMRI and MEG, an ultra-low-field MRI (ULF-MRI) scanner that can generate a static magnetic field (B0) with an electromagnetic coil and turn off the B0 during MEG measurements is desirable. While electromagnetic B0 coil has the above advantages, it also has a trade-off between size and the broadness of the magnetic field homogeneity. In this study, we proposed a method for designing a B0 multi-stage circular coil arrangement that determines the number of coils required to maximize magnetic field homogeneity and minimize the total wiring length of the coils. The optimized multi-stage coil arrangement had an external shape of 600 mm in diameter and a maximum height of 600 mm, with an aperture of 600 mm in diameter and 300 mm in height. The magnetic field homogeneity was <100 ppm over a 210 mm diameter spherical volume (DSV). Compared to a previous two coil pairs arrangement with the same magnetic field homogeneity, the diameter was 1/1.9 times smaller, indicating that the newly designed B0 coil arrangement realized a smaller size and wider magnetic field homogeneity.</p></div>\",\"PeriodicalId\":18165,\"journal\":{\"name\":\"Magnetic resonance imaging\",\"volume\":\"112 \",\"pages\":\"Pages 128-135\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-07-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Magnetic resonance imaging\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0730725X24001814\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Magnetic resonance imaging","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0730725X24001814","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
Homogeneous B0 coil design method for open-access ultra-low field magnetic resonance imaging: A simulation study
A multimodal brain function measurement system integrating functional magnetic resonance imaging (fMRI) and magnetoencephalography (MEG) is expected to be a tool that will provide new insights into neuroscience. To integrate fMRI and MEG, an ultra-low-field MRI (ULF-MRI) scanner that can generate a static magnetic field (B0) with an electromagnetic coil and turn off the B0 during MEG measurements is desirable. While electromagnetic B0 coil has the above advantages, it also has a trade-off between size and the broadness of the magnetic field homogeneity. In this study, we proposed a method for designing a B0 multi-stage circular coil arrangement that determines the number of coils required to maximize magnetic field homogeneity and minimize the total wiring length of the coils. The optimized multi-stage coil arrangement had an external shape of 600 mm in diameter and a maximum height of 600 mm, with an aperture of 600 mm in diameter and 300 mm in height. The magnetic field homogeneity was <100 ppm over a 210 mm diameter spherical volume (DSV). Compared to a previous two coil pairs arrangement with the same magnetic field homogeneity, the diameter was 1/1.9 times smaller, indicating that the newly designed B0 coil arrangement realized a smaller size and wider magnetic field homogeneity.
期刊介绍:
Magnetic Resonance Imaging (MRI) is the first international multidisciplinary journal encompassing physical, life, and clinical science investigations as they relate to the development and use of magnetic resonance imaging. MRI is dedicated to both basic research, technological innovation and applications, providing a single forum for communication among radiologists, physicists, chemists, biochemists, biologists, engineers, internists, pathologists, physiologists, computer scientists, and mathematicians.