Wirginia Tomczak, Piotr Woźniak, Marek Gryta, Joanna Grzechulska-Damszel, Monika Daniluk
{"title":"超滤膜的清洁:洗车废水的长期处理案例研究。","authors":"Wirginia Tomczak, Piotr Woźniak, Marek Gryta, Joanna Grzechulska-Damszel, Monika Daniluk","doi":"10.3390/membranes14070159","DOIUrl":null,"url":null,"abstract":"<p><p>Car wash wastewaters (CWWs) contain various pollutants with different contents. Hence, selecting an appropriate process for their treatment is a great challenge. Undoubtedly, the ultrafiltration (UF) process is one of the most interesting and reliable choices. Therefore, the main aim of the current study was to investigate the performance of the UF membranes used for the long-term treatment of real CWWs. For this purpose, two polyethersulfone (PES) membranes with molecular weight cut-off (MWCO) values equal to 10 and 100 kDa were applied. As expected, a significant decrease in the permeate flux during the UF run was observed. However, it was immediately demonstrated that the systematic cleaning of membranes (every day) with Insect agent (pH = 11.5) prevented a further decline in the process's performance. In addition, this study focused on the relative flux during the process run with breaks lasting a few days when the UF installation was filled with distilled water. The results of this research indicated that aqueous media favor microorganism adherence to the surface which leads to the formation of biofilms inside processing installations. As a consequence, many attempts have been made to restore the initial membrane performance. It has been found that the application of several chemical agents is required. More precisely, the use of an Insect solution, P3 Ultrasil 11 agent, and phosphoric acid increases the relative flux to a value of 0.8. Finally, it has been indicated that the membranes used in this work are resistant to the long-term exposure to bacteria and chemical agents. However, during the separation of CWWs for the membrane with an MWCO of 10 kDa, a lesser fouling influence and higher effectiveness of cleaning were obtained. Finally, the present study demonstrates a novel analysis and innovative implications towards applying the UF process for the CWW treatment.</p>","PeriodicalId":18410,"journal":{"name":"Membranes","volume":"14 7","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2024-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11278524/pdf/","citationCount":"0","resultStr":"{\"title\":\"Cleaning of Ultrafiltration Membranes: Long-Term Treatment of Car Wash Wastewater as a Case Study.\",\"authors\":\"Wirginia Tomczak, Piotr Woźniak, Marek Gryta, Joanna Grzechulska-Damszel, Monika Daniluk\",\"doi\":\"10.3390/membranes14070159\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Car wash wastewaters (CWWs) contain various pollutants with different contents. Hence, selecting an appropriate process for their treatment is a great challenge. Undoubtedly, the ultrafiltration (UF) process is one of the most interesting and reliable choices. Therefore, the main aim of the current study was to investigate the performance of the UF membranes used for the long-term treatment of real CWWs. For this purpose, two polyethersulfone (PES) membranes with molecular weight cut-off (MWCO) values equal to 10 and 100 kDa were applied. As expected, a significant decrease in the permeate flux during the UF run was observed. However, it was immediately demonstrated that the systematic cleaning of membranes (every day) with Insect agent (pH = 11.5) prevented a further decline in the process's performance. In addition, this study focused on the relative flux during the process run with breaks lasting a few days when the UF installation was filled with distilled water. The results of this research indicated that aqueous media favor microorganism adherence to the surface which leads to the formation of biofilms inside processing installations. As a consequence, many attempts have been made to restore the initial membrane performance. It has been found that the application of several chemical agents is required. More precisely, the use of an Insect solution, P3 Ultrasil 11 agent, and phosphoric acid increases the relative flux to a value of 0.8. Finally, it has been indicated that the membranes used in this work are resistant to the long-term exposure to bacteria and chemical agents. However, during the separation of CWWs for the membrane with an MWCO of 10 kDa, a lesser fouling influence and higher effectiveness of cleaning were obtained. Finally, the present study demonstrates a novel analysis and innovative implications towards applying the UF process for the CWW treatment.</p>\",\"PeriodicalId\":18410,\"journal\":{\"name\":\"Membranes\",\"volume\":\"14 7\",\"pages\":\"\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2024-07-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11278524/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Membranes\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3390/membranes14070159\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Membranes","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/membranes14070159","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Cleaning of Ultrafiltration Membranes: Long-Term Treatment of Car Wash Wastewater as a Case Study.
Car wash wastewaters (CWWs) contain various pollutants with different contents. Hence, selecting an appropriate process for their treatment is a great challenge. Undoubtedly, the ultrafiltration (UF) process is one of the most interesting and reliable choices. Therefore, the main aim of the current study was to investigate the performance of the UF membranes used for the long-term treatment of real CWWs. For this purpose, two polyethersulfone (PES) membranes with molecular weight cut-off (MWCO) values equal to 10 and 100 kDa were applied. As expected, a significant decrease in the permeate flux during the UF run was observed. However, it was immediately demonstrated that the systematic cleaning of membranes (every day) with Insect agent (pH = 11.5) prevented a further decline in the process's performance. In addition, this study focused on the relative flux during the process run with breaks lasting a few days when the UF installation was filled with distilled water. The results of this research indicated that aqueous media favor microorganism adherence to the surface which leads to the formation of biofilms inside processing installations. As a consequence, many attempts have been made to restore the initial membrane performance. It has been found that the application of several chemical agents is required. More precisely, the use of an Insect solution, P3 Ultrasil 11 agent, and phosphoric acid increases the relative flux to a value of 0.8. Finally, it has been indicated that the membranes used in this work are resistant to the long-term exposure to bacteria and chemical agents. However, during the separation of CWWs for the membrane with an MWCO of 10 kDa, a lesser fouling influence and higher effectiveness of cleaning were obtained. Finally, the present study demonstrates a novel analysis and innovative implications towards applying the UF process for the CWW treatment.
MembranesChemical Engineering-Filtration and Separation
CiteScore
6.10
自引率
16.70%
发文量
1071
审稿时长
11 weeks
期刊介绍:
Membranes (ISSN 2077-0375) is an international, peer-reviewed open access journal of separation science and technology. It publishes reviews, research articles, communications and technical notes. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. Full experimental and/or methodical details must be provided.