{"title":"研究机动车碰撞事故中驾驶员受伤的严重程度:基于 copula 的方法,考虑到发展中国家的时间异质性。","authors":"Shahrior Pervaz , Tanmoy Bhowmik , Naveen Eluru","doi":"10.1016/j.aap.2024.107721","DOIUrl":null,"url":null,"abstract":"<div><p>Using data from a developing country, the current study develops a copula-based joint modeling framework to study crash type and driver injury severity as two dimensions of the severity process. To be specific, a copula-based multinomial logit model (for crash type) and generalized ordered logit model (for driver severity) is estimated in the study. The data for our analysis is drawn from Bangladesh for the years of 2000 to 2015. Given the presence of multiple years of data, we develop a novel spline variable generation approach that facilitates easy testing of variation in parameters across time in crash type and severity components. A comprehensive set of independent variables including driver and vehicle characteristics, roadway attributes, environmental and weather information, and temporal factors are considered for the analysis. The model results identify several important variables (such as driving under the influence of drug and alcohol, speeding, vehicle type, maneuvering, vehicle fitness, location type, road class, road geometry, facility type, surface quality, time of the day, season, and light conditions) affecting crash type and severity while also highlighting the presence of temporal instability for a subset of parameters. The superior model performance was further highlighted by testing its performance using a holdout sample. Further, an elasticity exercise illustrates the influence of the exogenous variables on crash type and injury severity dimensions. The study findings can assist policy makers in adopting appropriate strategies to make roads safer in developing countries.</p></div>","PeriodicalId":6926,"journal":{"name":"Accident; analysis and prevention","volume":"206 ","pages":"Article 107721"},"PeriodicalIF":5.7000,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Examining driver injury severity in motor vehicle crashes: A copula-based approach considering temporal heterogeneity in a developing country context\",\"authors\":\"Shahrior Pervaz , Tanmoy Bhowmik , Naveen Eluru\",\"doi\":\"10.1016/j.aap.2024.107721\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Using data from a developing country, the current study develops a copula-based joint modeling framework to study crash type and driver injury severity as two dimensions of the severity process. To be specific, a copula-based multinomial logit model (for crash type) and generalized ordered logit model (for driver severity) is estimated in the study. The data for our analysis is drawn from Bangladesh for the years of 2000 to 2015. Given the presence of multiple years of data, we develop a novel spline variable generation approach that facilitates easy testing of variation in parameters across time in crash type and severity components. A comprehensive set of independent variables including driver and vehicle characteristics, roadway attributes, environmental and weather information, and temporal factors are considered for the analysis. The model results identify several important variables (such as driving under the influence of drug and alcohol, speeding, vehicle type, maneuvering, vehicle fitness, location type, road class, road geometry, facility type, surface quality, time of the day, season, and light conditions) affecting crash type and severity while also highlighting the presence of temporal instability for a subset of parameters. The superior model performance was further highlighted by testing its performance using a holdout sample. Further, an elasticity exercise illustrates the influence of the exogenous variables on crash type and injury severity dimensions. The study findings can assist policy makers in adopting appropriate strategies to make roads safer in developing countries.</p></div>\",\"PeriodicalId\":6926,\"journal\":{\"name\":\"Accident; analysis and prevention\",\"volume\":\"206 \",\"pages\":\"Article 107721\"},\"PeriodicalIF\":5.7000,\"publicationDate\":\"2024-07-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accident; analysis and prevention\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0001457524002665\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ERGONOMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accident; analysis and prevention","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0001457524002665","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ERGONOMICS","Score":null,"Total":0}
Examining driver injury severity in motor vehicle crashes: A copula-based approach considering temporal heterogeneity in a developing country context
Using data from a developing country, the current study develops a copula-based joint modeling framework to study crash type and driver injury severity as two dimensions of the severity process. To be specific, a copula-based multinomial logit model (for crash type) and generalized ordered logit model (for driver severity) is estimated in the study. The data for our analysis is drawn from Bangladesh for the years of 2000 to 2015. Given the presence of multiple years of data, we develop a novel spline variable generation approach that facilitates easy testing of variation in parameters across time in crash type and severity components. A comprehensive set of independent variables including driver and vehicle characteristics, roadway attributes, environmental and weather information, and temporal factors are considered for the analysis. The model results identify several important variables (such as driving under the influence of drug and alcohol, speeding, vehicle type, maneuvering, vehicle fitness, location type, road class, road geometry, facility type, surface quality, time of the day, season, and light conditions) affecting crash type and severity while also highlighting the presence of temporal instability for a subset of parameters. The superior model performance was further highlighted by testing its performance using a holdout sample. Further, an elasticity exercise illustrates the influence of the exogenous variables on crash type and injury severity dimensions. The study findings can assist policy makers in adopting appropriate strategies to make roads safer in developing countries.
期刊介绍:
Accident Analysis & Prevention provides wide coverage of the general areas relating to accidental injury and damage, including the pre-injury and immediate post-injury phases. Published papers deal with medical, legal, economic, educational, behavioral, theoretical or empirical aspects of transportation accidents, as well as with accidents at other sites. Selected topics within the scope of the Journal may include: studies of human, environmental and vehicular factors influencing the occurrence, type and severity of accidents and injury; the design, implementation and evaluation of countermeasures; biomechanics of impact and human tolerance limits to injury; modelling and statistical analysis of accident data; policy, planning and decision-making in safety.