{"title":"12-Hydroxyeicosatetraenoic acid 是唯一一种在脑缺血情况下会增加的酶促 HETE。","authors":"","doi":"10.1016/j.plefa.2024.102631","DOIUrl":null,"url":null,"abstract":"<div><p>Hydroxyeicosatetraenoic acids (HETE) are dramatically increased under brain ischemia and significantly affect post-ischemic recovery. However, the exact mechanism of HETE increase and their origin under ischemia are poorly understood. HETE might be produced <em>de novo</em> through lipoxygenase (LOX) -dependent synthesis with possible esterification into a lipid storage pool, or non-enzymatically through free radical oxidation of esterified arachidonic acid (20:4n6). Because HETE synthesized through LOX exhibit stereospecificity, chiral analysis allows separation of enzymatic from non-enzymatic pools. In the present study, we analyzed free HETE stereoisomers at 30 sec, 2 min, and 10 min of ischemia. Consistent with previous reports, we demonstrated a significant, gradual increase in all analyzed HETE over 10 min of brain ischemia, likely attributed to release of the esterified pool. The R/S ratio for 5-HETE, 8-HETE, and 15-HETE was not different from a racemic standard mix, indicating their non-enzymatic origin, which was in opposition to the inflamed tissue used as a positive control in our study. However, 12(S)-HETE was the predominant isoform under ischemia, indicating that ∼90 % of 12-HETE are produced enzymatically. These data demonstrate, for the first time, that 12-LOX is the major LOX isoform responsible for the enzymatic formation of the inducible HETE pool under ischemia. We also confirmed the requirement for enzyme inactivation with high-energy focused microwave irradiation (MW) for accurate HETE quantification and validated its application for chiral HETE analysis. Together, our data suggest that 12-LOX and HETE-releasing enzymes are promising targets for HETE level modulation upon brain ischemia.</p></div>","PeriodicalId":94179,"journal":{"name":"Prostaglandins, leukotrienes, and essential fatty acids","volume":null,"pages":null},"PeriodicalIF":3.0000,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"12-Hydroxyeicosatetraenoic acid is the only enzymatically produced HETE increased under brain ischemia.\",\"authors\":\"\",\"doi\":\"10.1016/j.plefa.2024.102631\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Hydroxyeicosatetraenoic acids (HETE) are dramatically increased under brain ischemia and significantly affect post-ischemic recovery. However, the exact mechanism of HETE increase and their origin under ischemia are poorly understood. HETE might be produced <em>de novo</em> through lipoxygenase (LOX) -dependent synthesis with possible esterification into a lipid storage pool, or non-enzymatically through free radical oxidation of esterified arachidonic acid (20:4n6). Because HETE synthesized through LOX exhibit stereospecificity, chiral analysis allows separation of enzymatic from non-enzymatic pools. In the present study, we analyzed free HETE stereoisomers at 30 sec, 2 min, and 10 min of ischemia. Consistent with previous reports, we demonstrated a significant, gradual increase in all analyzed HETE over 10 min of brain ischemia, likely attributed to release of the esterified pool. The R/S ratio for 5-HETE, 8-HETE, and 15-HETE was not different from a racemic standard mix, indicating their non-enzymatic origin, which was in opposition to the inflamed tissue used as a positive control in our study. However, 12(S)-HETE was the predominant isoform under ischemia, indicating that ∼90 % of 12-HETE are produced enzymatically. These data demonstrate, for the first time, that 12-LOX is the major LOX isoform responsible for the enzymatic formation of the inducible HETE pool under ischemia. We also confirmed the requirement for enzyme inactivation with high-energy focused microwave irradiation (MW) for accurate HETE quantification and validated its application for chiral HETE analysis. Together, our data suggest that 12-LOX and HETE-releasing enzymes are promising targets for HETE level modulation upon brain ischemia.</p></div>\",\"PeriodicalId\":94179,\"journal\":{\"name\":\"Prostaglandins, leukotrienes, and essential fatty acids\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Prostaglandins, leukotrienes, and essential fatty acids\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0952327824000255\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Prostaglandins, leukotrienes, and essential fatty acids","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0952327824000255","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
12-Hydroxyeicosatetraenoic acid is the only enzymatically produced HETE increased under brain ischemia.
Hydroxyeicosatetraenoic acids (HETE) are dramatically increased under brain ischemia and significantly affect post-ischemic recovery. However, the exact mechanism of HETE increase and their origin under ischemia are poorly understood. HETE might be produced de novo through lipoxygenase (LOX) -dependent synthesis with possible esterification into a lipid storage pool, or non-enzymatically through free radical oxidation of esterified arachidonic acid (20:4n6). Because HETE synthesized through LOX exhibit stereospecificity, chiral analysis allows separation of enzymatic from non-enzymatic pools. In the present study, we analyzed free HETE stereoisomers at 30 sec, 2 min, and 10 min of ischemia. Consistent with previous reports, we demonstrated a significant, gradual increase in all analyzed HETE over 10 min of brain ischemia, likely attributed to release of the esterified pool. The R/S ratio for 5-HETE, 8-HETE, and 15-HETE was not different from a racemic standard mix, indicating their non-enzymatic origin, which was in opposition to the inflamed tissue used as a positive control in our study. However, 12(S)-HETE was the predominant isoform under ischemia, indicating that ∼90 % of 12-HETE are produced enzymatically. These data demonstrate, for the first time, that 12-LOX is the major LOX isoform responsible for the enzymatic formation of the inducible HETE pool under ischemia. We also confirmed the requirement for enzyme inactivation with high-energy focused microwave irradiation (MW) for accurate HETE quantification and validated its application for chiral HETE analysis. Together, our data suggest that 12-LOX and HETE-releasing enzymes are promising targets for HETE level modulation upon brain ischemia.