Cox
IF 2.4 4区 物理与天体物理 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY Current Applied Physics Pub Date : 2024-07-26 DOI:10.1016/j.cap.2024.07.014
Hojun Lee, Hyun-Woo Lee

{"title":"Cox<mml:mtext mathvariant=\"normal\" 中轨道扭矩的成分依赖性","authors":"Hojun Lee,&nbsp;Hyun-Woo Lee","doi":"10.1016/j.cap.2024.07.014","DOIUrl":null,"url":null,"abstract":"<div><p>The spin-orbit correlation in ferromagnet (FM) is an important factor that affects the orbital torque efficiency in the FM. We investigate the spin-orbit correlation in FM alloys, <span><math><msub><mrow><mtext>Co</mtext></mrow><mrow><mi>x</mi></mrow></msub><msub><mrow><mtext>Fe</mtext></mrow><mrow><mn>1</mn><mo>−</mo><mi>x</mi></mrow></msub></math></span> and <span><math><msub><mrow><mtext>Ni</mtext></mrow><mrow><mi>x</mi></mrow></msub><msub><mrow><mtext>Fe</mtext></mrow><mrow><mn>1</mn><mo>−</mo><mi>x</mi></mrow></msub></math></span>, with varying their composition. We find spots where the spin-orbit correlation is significantly strong near the Fermi surface in <span><math><msub><mrow><mtext>Co</mtext></mrow><mrow><mn>0.125</mn></mrow></msub><msub><mrow><mtext>Fe</mtext></mrow><mrow><mn>0.875</mn></mrow></msub></math></span>, <span><math><msub><mrow><mtext>Co</mtext></mrow><mrow><mn>0.25</mn></mrow></msub><msub><mrow><mtext>Fe</mtext></mrow><mrow><mn>0.75</mn></mrow></msub></math></span>, <span><math><msub><mrow><mtext>Co</mtext></mrow><mrow><mn>0.875</mn></mrow></msub><msub><mrow><mtext>Fe</mtext></mrow><mrow><mn>0.125</mn></mrow></msub></math></span>, and <span><math><msub><mrow><mtext>Ni</mtext></mrow><mrow><mn>0.5</mn></mrow></msub><msub><mrow><mtext>Fe</mtext></mrow><mrow><mn>0.5</mn></mrow></msub></math></span>, while no such spot appears in <span><math><msub><mrow><mtext>Co</mtext></mrow><mrow><mn>0.5</mn></mrow></msub><msub><mrow><mtext>Fe</mtext></mrow><mrow><mn>0.5</mn></mrow></msub></math></span>, and <span><math><msub><mrow><mtext>Ni</mtext></mrow><mrow><mn>0.75</mn></mrow></msub><msub><mrow><mtext>Fe</mtext></mrow><mrow><mn>0.25</mn></mrow></msub></math></span>. These results imply that in the former structures, the orbital polarized current injected into these spots can provide a strong torque to the magnetization of the FM through the orbital torque mechanism. These results also show that even in the same alloy system, the difference in alloy composition can lead to different orbital torque efficiency.</p></div>","PeriodicalId":11037,"journal":{"name":"Current Applied Physics","volume":"67 ","pages":"Pages 60-68"},"PeriodicalIF":2.4000,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Composition dependence of the orbital torque in CoxFe1−x and NixFe1−x alloys: Spin-orbit correlation analysis\",\"authors\":\"Hojun Lee,&nbsp;Hyun-Woo Lee\",\"doi\":\"10.1016/j.cap.2024.07.014\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The spin-orbit correlation in ferromagnet (FM) is an important factor that affects the orbital torque efficiency in the FM. We investigate the spin-orbit correlation in FM alloys, <span><math><msub><mrow><mtext>Co</mtext></mrow><mrow><mi>x</mi></mrow></msub><msub><mrow><mtext>Fe</mtext></mrow><mrow><mn>1</mn><mo>−</mo><mi>x</mi></mrow></msub></math></span> and <span><math><msub><mrow><mtext>Ni</mtext></mrow><mrow><mi>x</mi></mrow></msub><msub><mrow><mtext>Fe</mtext></mrow><mrow><mn>1</mn><mo>−</mo><mi>x</mi></mrow></msub></math></span>, with varying their composition. We find spots where the spin-orbit correlation is significantly strong near the Fermi surface in <span><math><msub><mrow><mtext>Co</mtext></mrow><mrow><mn>0.125</mn></mrow></msub><msub><mrow><mtext>Fe</mtext></mrow><mrow><mn>0.875</mn></mrow></msub></math></span>, <span><math><msub><mrow><mtext>Co</mtext></mrow><mrow><mn>0.25</mn></mrow></msub><msub><mrow><mtext>Fe</mtext></mrow><mrow><mn>0.75</mn></mrow></msub></math></span>, <span><math><msub><mrow><mtext>Co</mtext></mrow><mrow><mn>0.875</mn></mrow></msub><msub><mrow><mtext>Fe</mtext></mrow><mrow><mn>0.125</mn></mrow></msub></math></span>, and <span><math><msub><mrow><mtext>Ni</mtext></mrow><mrow><mn>0.5</mn></mrow></msub><msub><mrow><mtext>Fe</mtext></mrow><mrow><mn>0.5</mn></mrow></msub></math></span>, while no such spot appears in <span><math><msub><mrow><mtext>Co</mtext></mrow><mrow><mn>0.5</mn></mrow></msub><msub><mrow><mtext>Fe</mtext></mrow><mrow><mn>0.5</mn></mrow></msub></math></span>, and <span><math><msub><mrow><mtext>Ni</mtext></mrow><mrow><mn>0.75</mn></mrow></msub><msub><mrow><mtext>Fe</mtext></mrow><mrow><mn>0.25</mn></mrow></msub></math></span>. These results imply that in the former structures, the orbital polarized current injected into these spots can provide a strong torque to the magnetization of the FM through the orbital torque mechanism. These results also show that even in the same alloy system, the difference in alloy composition can lead to different orbital torque efficiency.</p></div>\",\"PeriodicalId\":11037,\"journal\":{\"name\":\"Current Applied Physics\",\"volume\":\"67 \",\"pages\":\"Pages 60-68\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-07-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Applied Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1567173924001718\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Applied Physics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1567173924001718","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

铁磁体(FM)中的自旋轨道相关性是影响 FM 轨道转矩效率的一个重要因素。我们研究了不同成分的铁磁合金 CoxFe1-x 和 NixFe1-x 中的自旋轨道相关性。我们发现,在 Co0.125Fe0.875、Co0.25Fe0.75、Co0.875Fe0.125 和 Ni0.5Fe0.5 中,费米表面附近的自旋轨道相关性明显较强,而在 Co0.5Fe0.5 和 Ni0.75Fe0.25 中则没有出现这样的斑点。这些结果表明,在前一种结构中,注入这些斑点的轨道极化电流可以通过轨道力矩机制为调频磁化提供强大的力矩。这些结果还表明,即使在相同的合金体系中,合金成分的不同也会导致轨道转矩效率的不同。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Composition dependence of the orbital torque in CoxFe1−x and NixFe1−x alloys: Spin-orbit correlation analysis

The spin-orbit correlation in ferromagnet (FM) is an important factor that affects the orbital torque efficiency in the FM. We investigate the spin-orbit correlation in FM alloys, CoxFe1x and NixFe1x, with varying their composition. We find spots where the spin-orbit correlation is significantly strong near the Fermi surface in Co0.125Fe0.875, Co0.25Fe0.75, Co0.875Fe0.125, and Ni0.5Fe0.5, while no such spot appears in Co0.5Fe0.5, and Ni0.75Fe0.25. These results imply that in the former structures, the orbital polarized current injected into these spots can provide a strong torque to the magnetization of the FM through the orbital torque mechanism. These results also show that even in the same alloy system, the difference in alloy composition can lead to different orbital torque efficiency.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Current Applied Physics
Current Applied Physics 物理-材料科学:综合
CiteScore
4.80
自引率
0.00%
发文量
213
审稿时长
33 days
期刊介绍: Current Applied Physics (Curr. Appl. Phys.) is a monthly published international journal covering all the fields of applied science investigating the physics of the advanced materials for future applications. Other areas covered: Experimental and theoretical aspects of advanced materials and devices dealing with synthesis or structural chemistry, physical and electronic properties, photonics, engineering applications, and uniquely pertinent measurement or analytical techniques. Current Applied Physics, published since 2001, covers physics, chemistry and materials science, including bio-materials, with their engineering aspects. It is a truly interdisciplinary journal opening a forum for scientists of all related fields, a unique point of the journal discriminating it from other worldwide and/or Pacific Rim applied physics journals. Regular research papers, letters and review articles with contents meeting the scope of the journal will be considered for publication after peer review. The Journal is owned by the Korean Physical Society.
期刊最新文献
Transient heat-flux method for measuring heat capacity: Examples from Cu and VO2 Permeability modulation of Fe-Ni/nanoparticle (Ni, Zn) soft magnetic composites Editorial Board Effect of cadmium sulphide on poly (ethyl methacrylate) (PEMA) based electrolyte nanocomposite and its application in dye sensitized solar cell (DSSC) Design and fabrication of ultrathin silicon-based strain gauges for piezoresistive pressure sensor
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1