Rafi Ur Rahman , Muhammad Quddamah Khokhar , Hasnain Yousuf , Maha Nur Aida , Jaljalalul Abedin Jony , Alamgeer , Polgampola Chamani Madara , Mengmeng Chu , Sangheon Park , Junsin Yi
{"title":"n 型晶体硅 TOPCon 太阳能电池金属化的优化策略:提高填充因子和效率的途径","authors":"Rafi Ur Rahman , Muhammad Quddamah Khokhar , Hasnain Yousuf , Maha Nur Aida , Jaljalalul Abedin Jony , Alamgeer , Polgampola Chamani Madara , Mengmeng Chu , Sangheon Park , Junsin Yi","doi":"10.1016/j.cap.2024.07.012","DOIUrl":null,"url":null,"abstract":"<div><p>In advancing photovoltaic technology, optimizing the metallization process is crucial for balancing electrical conductivity and optical performance in solar cell fabrication. This process directly impacts the efficiency and quality of solar cells, traditionally measured by the fill factor (<em>FF</em>). Historically, efforts have focused on evolving metal contacts to reduce optical shading and series resistance, which degrade solar cell efficiency. Our study enhances n-type Tunnel Oxide Passivated Contact (<em>n-TOPCon</em>) solar cells by optimizing screen-printing metallization, particularly by examining the effects of squeegee speeds. Employing a mix of experimental and analytical methodologies, we aimed to identify optimal conditions that improve electrical and optical performance, thereby elevating cell efficiency. Our findings indicate that a squeegee speed of 170 mm/s substantially boosts solar cell performance, evidenced by a current density (J<sub>sc</sub>) of 38.96 mA/cm<sup>2</sup>, open-circuit voltage (<em>V</em><sub><em>oc</em></sub>) of 684.29 mV, fill factor (<em>FF</em>) of 78.77 %, and a power conversion efficiency (<em>PCE</em>) of 21.00 %. Further, dark I–V measurements confirmed a shunt resistance (<em>R</em><sub><em>sh</em></sub>) of 6.25 × 10<sup>6</sup> Ω and a reduced series resistance (<em>R</em><sub><em>s</em></sub>) of 6.48 Ω, underscoring the significance of precise metallization in reducing resistive losses and enhancing efficiency. Future research will explore innovative materials and cutting-edge printing techniques beyond squeegee speed adjustments. The potential incorporation of nanomaterials and conducting polymers aims to refine the metallization process further, promising to push the boundaries of efficiency and cost-effectiveness. This progression is essential for advancing n-TOPCon solar cell development, setting new industry standards, and propelling the sustainable energy movement.</p></div>","PeriodicalId":11037,"journal":{"name":"Current Applied Physics","volume":"67 ","pages":"Pages 107-114"},"PeriodicalIF":2.4000,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimization strategies for metallization in n-type crystalline silicon TOPCon solar cells: Pathways to elevated fill factor and enhanced efficiency\",\"authors\":\"Rafi Ur Rahman , Muhammad Quddamah Khokhar , Hasnain Yousuf , Maha Nur Aida , Jaljalalul Abedin Jony , Alamgeer , Polgampola Chamani Madara , Mengmeng Chu , Sangheon Park , Junsin Yi\",\"doi\":\"10.1016/j.cap.2024.07.012\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In advancing photovoltaic technology, optimizing the metallization process is crucial for balancing electrical conductivity and optical performance in solar cell fabrication. This process directly impacts the efficiency and quality of solar cells, traditionally measured by the fill factor (<em>FF</em>). Historically, efforts have focused on evolving metal contacts to reduce optical shading and series resistance, which degrade solar cell efficiency. Our study enhances n-type Tunnel Oxide Passivated Contact (<em>n-TOPCon</em>) solar cells by optimizing screen-printing metallization, particularly by examining the effects of squeegee speeds. Employing a mix of experimental and analytical methodologies, we aimed to identify optimal conditions that improve electrical and optical performance, thereby elevating cell efficiency. Our findings indicate that a squeegee speed of 170 mm/s substantially boosts solar cell performance, evidenced by a current density (J<sub>sc</sub>) of 38.96 mA/cm<sup>2</sup>, open-circuit voltage (<em>V</em><sub><em>oc</em></sub>) of 684.29 mV, fill factor (<em>FF</em>) of 78.77 %, and a power conversion efficiency (<em>PCE</em>) of 21.00 %. Further, dark I–V measurements confirmed a shunt resistance (<em>R</em><sub><em>sh</em></sub>) of 6.25 × 10<sup>6</sup> Ω and a reduced series resistance (<em>R</em><sub><em>s</em></sub>) of 6.48 Ω, underscoring the significance of precise metallization in reducing resistive losses and enhancing efficiency. Future research will explore innovative materials and cutting-edge printing techniques beyond squeegee speed adjustments. The potential incorporation of nanomaterials and conducting polymers aims to refine the metallization process further, promising to push the boundaries of efficiency and cost-effectiveness. This progression is essential for advancing n-TOPCon solar cell development, setting new industry standards, and propelling the sustainable energy movement.</p></div>\",\"PeriodicalId\":11037,\"journal\":{\"name\":\"Current Applied Physics\",\"volume\":\"67 \",\"pages\":\"Pages 107-114\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-07-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Applied Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1567173924001676\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Applied Physics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1567173924001676","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Optimization strategies for metallization in n-type crystalline silicon TOPCon solar cells: Pathways to elevated fill factor and enhanced efficiency
In advancing photovoltaic technology, optimizing the metallization process is crucial for balancing electrical conductivity and optical performance in solar cell fabrication. This process directly impacts the efficiency and quality of solar cells, traditionally measured by the fill factor (FF). Historically, efforts have focused on evolving metal contacts to reduce optical shading and series resistance, which degrade solar cell efficiency. Our study enhances n-type Tunnel Oxide Passivated Contact (n-TOPCon) solar cells by optimizing screen-printing metallization, particularly by examining the effects of squeegee speeds. Employing a mix of experimental and analytical methodologies, we aimed to identify optimal conditions that improve electrical and optical performance, thereby elevating cell efficiency. Our findings indicate that a squeegee speed of 170 mm/s substantially boosts solar cell performance, evidenced by a current density (Jsc) of 38.96 mA/cm2, open-circuit voltage (Voc) of 684.29 mV, fill factor (FF) of 78.77 %, and a power conversion efficiency (PCE) of 21.00 %. Further, dark I–V measurements confirmed a shunt resistance (Rsh) of 6.25 × 106 Ω and a reduced series resistance (Rs) of 6.48 Ω, underscoring the significance of precise metallization in reducing resistive losses and enhancing efficiency. Future research will explore innovative materials and cutting-edge printing techniques beyond squeegee speed adjustments. The potential incorporation of nanomaterials and conducting polymers aims to refine the metallization process further, promising to push the boundaries of efficiency and cost-effectiveness. This progression is essential for advancing n-TOPCon solar cell development, setting new industry standards, and propelling the sustainable energy movement.
期刊介绍:
Current Applied Physics (Curr. Appl. Phys.) is a monthly published international journal covering all the fields of applied science investigating the physics of the advanced materials for future applications.
Other areas covered: Experimental and theoretical aspects of advanced materials and devices dealing with synthesis or structural chemistry, physical and electronic properties, photonics, engineering applications, and uniquely pertinent measurement or analytical techniques.
Current Applied Physics, published since 2001, covers physics, chemistry and materials science, including bio-materials, with their engineering aspects. It is a truly interdisciplinary journal opening a forum for scientists of all related fields, a unique point of the journal discriminating it from other worldwide and/or Pacific Rim applied physics journals.
Regular research papers, letters and review articles with contents meeting the scope of the journal will be considered for publication after peer review.
The Journal is owned by the Korean Physical Society.