通过电脉冲工程重置超薄 HZO 铁电存储器中的氧空位漂移

IF 11.1 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Small Science Pub Date : 2024-07-30 DOI:10.1002/smsc.202400223
Atif Jan, Stephanie A. Fraser, Taehwan Moon, Yun Seong Lee, Hagyoul Bae, Hyun Jae Lee, Duk-Hyun Choe, Maximilian T. Becker, Judith L. MacManus-Driscoll, Jinseong Heo, Giuliana Di Martino
{"title":"通过电脉冲工程重置超薄 HZO 铁电存储器中的氧空位漂移","authors":"Atif Jan, Stephanie A. Fraser, Taehwan Moon, Yun Seong Lee, Hagyoul Bae, Hyun Jae Lee, Duk-Hyun Choe, Maximilian T. Becker, Judith L. MacManus-Driscoll, Jinseong Heo, Giuliana Di Martino","doi":"10.1002/smsc.202400223","DOIUrl":null,"url":null,"abstract":"Ferroelectric HfO<sub>2</sub>-based films incorporated in nonvolatile memory devices offer a low-energy, high-speed alternative to conventional memory systems. Oxygen vacancies have been rigorously cited in literature to be pivotal in stabilizing the polar noncentrosymmetric phase responsible for ferroelectricity in HfO<sub>2</sub>-based films. Thus, the ability to regulate and control oxygen vacancy migration in operando in such materials would potentially offer step changing new functionalities, tunable electrical properties, and enhanced device lifespan. Herein, a novel in- operando approach to control both wake-up and fatigue device dynamics is reported. Via clever design of short ad hoc square electrical pulses, both wake-up can be sped up and both fatigue and leakage inside the film can be reduced, key factors for enhancing the performance of memory devices. Using plasmon-enhanced photoluminescence and dark-field spectroscopy (sensitive to &lt;1% vacancy variation), evidence that the electrical pulses give rise to oxygen vacancy redistribution is provided and it is shown that pulse engineering effectively delays wake-up and reduces fatigue characteristics of the HfO<sub>2</sub>-based films. Comprehensive analysis also includes impedance spectroscopy measurements, which exclude any influence of polarization reversal or domain wall movement in interpretation of results.","PeriodicalId":29791,"journal":{"name":"Small Science","volume":"129 1","pages":""},"PeriodicalIF":11.1000,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Resetting the Drift of Oxygen Vacancies in Ultrathin HZO Ferroelectric Memories by Electrical Pulse Engineering\",\"authors\":\"Atif Jan, Stephanie A. Fraser, Taehwan Moon, Yun Seong Lee, Hagyoul Bae, Hyun Jae Lee, Duk-Hyun Choe, Maximilian T. Becker, Judith L. MacManus-Driscoll, Jinseong Heo, Giuliana Di Martino\",\"doi\":\"10.1002/smsc.202400223\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Ferroelectric HfO<sub>2</sub>-based films incorporated in nonvolatile memory devices offer a low-energy, high-speed alternative to conventional memory systems. Oxygen vacancies have been rigorously cited in literature to be pivotal in stabilizing the polar noncentrosymmetric phase responsible for ferroelectricity in HfO<sub>2</sub>-based films. Thus, the ability to regulate and control oxygen vacancy migration in operando in such materials would potentially offer step changing new functionalities, tunable electrical properties, and enhanced device lifespan. Herein, a novel in- operando approach to control both wake-up and fatigue device dynamics is reported. Via clever design of short ad hoc square electrical pulses, both wake-up can be sped up and both fatigue and leakage inside the film can be reduced, key factors for enhancing the performance of memory devices. Using plasmon-enhanced photoluminescence and dark-field spectroscopy (sensitive to &lt;1% vacancy variation), evidence that the electrical pulses give rise to oxygen vacancy redistribution is provided and it is shown that pulse engineering effectively delays wake-up and reduces fatigue characteristics of the HfO<sub>2</sub>-based films. Comprehensive analysis also includes impedance spectroscopy measurements, which exclude any influence of polarization reversal or domain wall movement in interpretation of results.\",\"PeriodicalId\":29791,\"journal\":{\"name\":\"Small Science\",\"volume\":\"129 1\",\"pages\":\"\"},\"PeriodicalIF\":11.1000,\"publicationDate\":\"2024-07-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Small Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1002/smsc.202400223\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/smsc.202400223","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

将基于二氧化铪的铁电薄膜应用于非易失性存储器设备,为传统存储器系统提供了一种低能耗、高速度的替代方案。氧空位在稳定 HfO2 基薄膜铁电性的极性非五次对称相方面起着关键作用,这一点已被文献严格证实。因此,在此类材料中调节和控制氧空位迁移的能力将有可能提供崭新的功能、可调的电学特性和更长的器件寿命。在此,我们报告了一种控制唤醒和疲劳器件动态的新型操作间方法。通过巧妙设计短小的临时方形电脉冲,既能加快唤醒速度,又能减少疲劳和薄膜内部的泄漏,这些都是提高存储器件性能的关键因素。利用等离子体增强光致发光和暗场光谱(对 1%空位变化敏感),提供了电脉冲引起氧空位重新分布的证据,并表明脉冲工程能有效延迟唤醒并降低基于 HfO2 的薄膜的疲劳特性。综合分析还包括阻抗光谱测量,在解释结果时排除了极化反转或畴壁移动的任何影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Resetting the Drift of Oxygen Vacancies in Ultrathin HZO Ferroelectric Memories by Electrical Pulse Engineering
Ferroelectric HfO2-based films incorporated in nonvolatile memory devices offer a low-energy, high-speed alternative to conventional memory systems. Oxygen vacancies have been rigorously cited in literature to be pivotal in stabilizing the polar noncentrosymmetric phase responsible for ferroelectricity in HfO2-based films. Thus, the ability to regulate and control oxygen vacancy migration in operando in such materials would potentially offer step changing new functionalities, tunable electrical properties, and enhanced device lifespan. Herein, a novel in- operando approach to control both wake-up and fatigue device dynamics is reported. Via clever design of short ad hoc square electrical pulses, both wake-up can be sped up and both fatigue and leakage inside the film can be reduced, key factors for enhancing the performance of memory devices. Using plasmon-enhanced photoluminescence and dark-field spectroscopy (sensitive to <1% vacancy variation), evidence that the electrical pulses give rise to oxygen vacancy redistribution is provided and it is shown that pulse engineering effectively delays wake-up and reduces fatigue characteristics of the HfO2-based films. Comprehensive analysis also includes impedance spectroscopy measurements, which exclude any influence of polarization reversal or domain wall movement in interpretation of results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
14.00
自引率
2.40%
发文量
0
期刊介绍: Small Science is a premium multidisciplinary open access journal dedicated to publishing impactful research from all areas of nanoscience and nanotechnology. It features interdisciplinary original research and focused review articles on relevant topics. The journal covers design, characterization, mechanism, technology, and application of micro-/nanoscale structures and systems in various fields including physics, chemistry, materials science, engineering, environmental science, life science, biology, and medicine. It welcomes innovative interdisciplinary research and its readership includes professionals from academia and industry in fields such as chemistry, physics, materials science, biology, engineering, and environmental and analytical science. Small Science is indexed and abstracted in CAS, DOAJ, Clarivate Analytics, ProQuest Central, Publicly Available Content Database, Science Database, SCOPUS, and Web of Science.
期刊最新文献
Multi-Organ Microphysiological Systems Targeting Specific Organs for Recapitulating Disease Phenotypes via Organ Crosstalk Inflammatory or Reparative? Tuning Macrophage Polarization Using Anodized Anisotropic Nanoporous Titanium Implant Surfaces Ultralow Lattice Thermal Conductivity of Zintl-Phase CaAgSb Induced by Interface and Superlattice Scattering Transformative Impact of Nanocarrier-Mediated Drug Delivery: Overcoming Biological Barriers and Expanding Therapeutic Horizons Flexible Phototransistors on Paper: Scalable Fabrication of PEDOT:PSS Devices Using a Pen Plotter
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1