Raquel A. C. Lima, Aluísio J. C. Pinto Júnior, Leandro A. Pocrifka, Ermete Antolini, Raimundo R. Passos
{"title":"以中心复合设计为工具研究热处理氮掺杂石墨烯在氧还原反应中的电催化活性","authors":"Raquel A. C. Lima, Aluísio J. C. Pinto Júnior, Leandro A. Pocrifka, Ermete Antolini, Raimundo R. Passos","doi":"10.1007/s10008-024-06022-1","DOIUrl":null,"url":null,"abstract":"<p>Nitrogen-doped graphene (N-graphene) electrocatalysts prepared using a thermal treatment procedure were systematically investigated for the oxygen reduction reaction (ORR). A central composite experimental design (CCD) was adopted to evaluate the effect of the thermal treatment temperature (from 660 to 940 °C) and mass ratio of graphene and urea precursors (from 1:3 to 1:17) on the electron transfer number (<i>n</i>) of the ORR in alkaline medium. No interaction effect was observed between the two factors, and only temperature had a positive and statistically-significant effect on the <i>n</i> value. XPS results indicated that the improvement of the electrocatalytic activity of N-graphene with the increase of doping temperature cannot be associated with the N configuration or the overall N content, but is related to the formation of defects on graphene. This investigation represents an important step in the adoption of multivariate experimentation for the exploration of metal-free electrocatalysts for fuel cell cathodes.</p>","PeriodicalId":665,"journal":{"name":"Journal of Solid State Electrochemistry","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Central composite design as a tool to investigate the electrocatalytic activity of thermally treated nitrogen-doped graphene for the oxygen reduction reaction\",\"authors\":\"Raquel A. C. Lima, Aluísio J. C. Pinto Júnior, Leandro A. Pocrifka, Ermete Antolini, Raimundo R. Passos\",\"doi\":\"10.1007/s10008-024-06022-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Nitrogen-doped graphene (N-graphene) electrocatalysts prepared using a thermal treatment procedure were systematically investigated for the oxygen reduction reaction (ORR). A central composite experimental design (CCD) was adopted to evaluate the effect of the thermal treatment temperature (from 660 to 940 °C) and mass ratio of graphene and urea precursors (from 1:3 to 1:17) on the electron transfer number (<i>n</i>) of the ORR in alkaline medium. No interaction effect was observed between the two factors, and only temperature had a positive and statistically-significant effect on the <i>n</i> value. XPS results indicated that the improvement of the electrocatalytic activity of N-graphene with the increase of doping temperature cannot be associated with the N configuration or the overall N content, but is related to the formation of defects on graphene. This investigation represents an important step in the adoption of multivariate experimentation for the exploration of metal-free electrocatalysts for fuel cell cathodes.</p>\",\"PeriodicalId\":665,\"journal\":{\"name\":\"Journal of Solid State Electrochemistry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-07-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Solid State Electrochemistry\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s10008-024-06022-1\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ELECTROCHEMISTRY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Solid State Electrochemistry","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s10008-024-06022-1","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
引用次数: 0
摘要
采用热处理程序制备的氮掺杂石墨烯(N-石墨烯)电催化剂对氧还原反应(ORR)进行了系统研究。采用中心复合实验设计(CCD)评估了热处理温度(从 660 ℃ 到 940 ℃)和石墨烯与尿素前驱体的质量比(从 1:3 到 1:17)对碱性介质中 ORR 电子转移数(n)的影响。在这两个因素之间没有观察到交互作用,只有温度对 n 值有积极的、统计学上显著的影响。XPS 结果表明,N-石墨烯的电催化活性随着掺杂温度的升高而提高,这与 N 的构型或总体 N 含量无关,而是与石墨烯上缺陷的形成有关。这项研究是采用多元实验探索燃料电池阴极无金属电催化剂的重要一步。
Central composite design as a tool to investigate the electrocatalytic activity of thermally treated nitrogen-doped graphene for the oxygen reduction reaction
Nitrogen-doped graphene (N-graphene) electrocatalysts prepared using a thermal treatment procedure were systematically investigated for the oxygen reduction reaction (ORR). A central composite experimental design (CCD) was adopted to evaluate the effect of the thermal treatment temperature (from 660 to 940 °C) and mass ratio of graphene and urea precursors (from 1:3 to 1:17) on the electron transfer number (n) of the ORR in alkaline medium. No interaction effect was observed between the two factors, and only temperature had a positive and statistically-significant effect on the n value. XPS results indicated that the improvement of the electrocatalytic activity of N-graphene with the increase of doping temperature cannot be associated with the N configuration or the overall N content, but is related to the formation of defects on graphene. This investigation represents an important step in the adoption of multivariate experimentation for the exploration of metal-free electrocatalysts for fuel cell cathodes.
期刊介绍:
The Journal of Solid State Electrochemistry is devoted to all aspects of solid-state chemistry and solid-state physics in electrochemistry.
The Journal of Solid State Electrochemistry publishes papers on all aspects of electrochemistry of solid compounds, including experimental and theoretical, basic and applied work. It equally publishes papers on the thermodynamics and kinetics of electrochemical reactions if at least one actively participating phase is solid. Also of interest are articles on the transport of ions and electrons in solids whenever these processes are relevant to electrochemical reactions and on the use of solid-state electrochemical reactions in the analysis of solids and their surfaces.
The journal covers solid-state electrochemistry and focusses on the following fields: mechanisms of solid-state electrochemical reactions, semiconductor electrochemistry, electrochemical batteries, accumulators and fuel cells, electrochemical mineral leaching, galvanic metal plating, electrochemical potential memory devices, solid-state electrochemical sensors, ion and electron transport in solid materials and polymers, electrocatalysis, photoelectrochemistry, corrosion of solid materials, solid-state electroanalysis, electrochemical machining of materials, electrochromism and electrochromic devices, new electrochemical solid-state synthesis.
The Journal of Solid State Electrochemistry makes the professional in research and industry aware of this swift progress and its importance for future developments and success in the above-mentioned fields.