Claudia Iriarte-Mesa, Janice Bergen, Kristina Danielyan, Francesco Crudo, Doris Marko, Hanspeter Kählig, Giorgia Del Favero, Freddy Kleitz
{"title":"功能化二氧化硅纳米粒子,实现与肠道细胞的定制互动以及对细胞旁渗透性的化学调节","authors":"Claudia Iriarte-Mesa, Janice Bergen, Kristina Danielyan, Francesco Crudo, Doris Marko, Hanspeter Kählig, Giorgia Del Favero, Freddy Kleitz","doi":"10.1002/smsc.202400112","DOIUrl":null,"url":null,"abstract":"The intestinal compartment confines the gut microbiome while enabling food passage and absorption of active molecules. For the rational design of oral formulations aiming to overcome physiological barriers of the gut, it is crucial to understand how cells respond to the presence of nanoparticulate materials. Taking advantage of the versatility and biocompatibility of dendritic mesoporous silica nanoparticles (DMSNs), several post-grafting strategies are developed to diversify the surface properties of spherical DMSNs and then probe interactions with the intestinal coculture cell model Caco-2/HT29-MTX-E12. Herein, the functionalization of DMSNs with polyethylene glycol, phosphonate, methyl, and farnesol moieties enables the investigation of both particle penetration through the mucus layer and pathways relevant to intracellular uptake. Contributions of surface chemistry, charge, and colloidal stability are correlated with the modulation of particle movement through the mucus and the organization of cell–cell junctions. Hydrophilic and negative functionalities favor particle distribution toward the intestinal monolayer. Instead, hydrophobic DMSNs are hindered by the mucus, possibly limiting cell contact. Hybrid surfaces, combining phosphonate and long carbon chain functions, support diffusion through the mucus and foster the paracellular permeability as well as the transient barrier relapse, as indicated by increased cell–cell distances and reorganization of tight junctions.","PeriodicalId":29791,"journal":{"name":"Small Science","volume":"74 1","pages":""},"PeriodicalIF":11.1000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Functionalization of Silica Nanoparticles for Tailored Interactions with Intestinal Cells and Chemical Modulation of Paracellular Permeability\",\"authors\":\"Claudia Iriarte-Mesa, Janice Bergen, Kristina Danielyan, Francesco Crudo, Doris Marko, Hanspeter Kählig, Giorgia Del Favero, Freddy Kleitz\",\"doi\":\"10.1002/smsc.202400112\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The intestinal compartment confines the gut microbiome while enabling food passage and absorption of active molecules. For the rational design of oral formulations aiming to overcome physiological barriers of the gut, it is crucial to understand how cells respond to the presence of nanoparticulate materials. Taking advantage of the versatility and biocompatibility of dendritic mesoporous silica nanoparticles (DMSNs), several post-grafting strategies are developed to diversify the surface properties of spherical DMSNs and then probe interactions with the intestinal coculture cell model Caco-2/HT29-MTX-E12. Herein, the functionalization of DMSNs with polyethylene glycol, phosphonate, methyl, and farnesol moieties enables the investigation of both particle penetration through the mucus layer and pathways relevant to intracellular uptake. Contributions of surface chemistry, charge, and colloidal stability are correlated with the modulation of particle movement through the mucus and the organization of cell–cell junctions. Hydrophilic and negative functionalities favor particle distribution toward the intestinal monolayer. Instead, hydrophobic DMSNs are hindered by the mucus, possibly limiting cell contact. Hybrid surfaces, combining phosphonate and long carbon chain functions, support diffusion through the mucus and foster the paracellular permeability as well as the transient barrier relapse, as indicated by increased cell–cell distances and reorganization of tight junctions.\",\"PeriodicalId\":29791,\"journal\":{\"name\":\"Small Science\",\"volume\":\"74 1\",\"pages\":\"\"},\"PeriodicalIF\":11.1000,\"publicationDate\":\"2024-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Small Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1002/smsc.202400112\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/smsc.202400112","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Functionalization of Silica Nanoparticles for Tailored Interactions with Intestinal Cells and Chemical Modulation of Paracellular Permeability
The intestinal compartment confines the gut microbiome while enabling food passage and absorption of active molecules. For the rational design of oral formulations aiming to overcome physiological barriers of the gut, it is crucial to understand how cells respond to the presence of nanoparticulate materials. Taking advantage of the versatility and biocompatibility of dendritic mesoporous silica nanoparticles (DMSNs), several post-grafting strategies are developed to diversify the surface properties of spherical DMSNs and then probe interactions with the intestinal coculture cell model Caco-2/HT29-MTX-E12. Herein, the functionalization of DMSNs with polyethylene glycol, phosphonate, methyl, and farnesol moieties enables the investigation of both particle penetration through the mucus layer and pathways relevant to intracellular uptake. Contributions of surface chemistry, charge, and colloidal stability are correlated with the modulation of particle movement through the mucus and the organization of cell–cell junctions. Hydrophilic and negative functionalities favor particle distribution toward the intestinal monolayer. Instead, hydrophobic DMSNs are hindered by the mucus, possibly limiting cell contact. Hybrid surfaces, combining phosphonate and long carbon chain functions, support diffusion through the mucus and foster the paracellular permeability as well as the transient barrier relapse, as indicated by increased cell–cell distances and reorganization of tight junctions.
期刊介绍:
Small Science is a premium multidisciplinary open access journal dedicated to publishing impactful research from all areas of nanoscience and nanotechnology. It features interdisciplinary original research and focused review articles on relevant topics. The journal covers design, characterization, mechanism, technology, and application of micro-/nanoscale structures and systems in various fields including physics, chemistry, materials science, engineering, environmental science, life science, biology, and medicine. It welcomes innovative interdisciplinary research and its readership includes professionals from academia and industry in fields such as chemistry, physics, materials science, biology, engineering, and environmental and analytical science. Small Science is indexed and abstracted in CAS, DOAJ, Clarivate Analytics, ProQuest Central, Publicly Available Content Database, Science Database, SCOPUS, and Web of Science.