通过三重稀土阳离子掺杂合成用于中温 SOFC 的立方体 δ 相稳定 Bi2O3 电解质并确定其特性

IF 2.7 Q2 PHYSICS, CONDENSED MATTER Micro and Nanostructures Pub Date : 2024-08-02 DOI:10.1016/j.micrna.2024.207944
{"title":"通过三重稀土阳离子掺杂合成用于中温 SOFC 的立方体 δ 相稳定 Bi2O3 电解质并确定其特性","authors":"","doi":"10.1016/j.micrna.2024.207944","DOIUrl":null,"url":null,"abstract":"<div><p>Face–centered cubic–Bi<sub>2</sub>O<sub>3</sub> (δ–phase), a high–ion conductor, is an essential solid electrolyte option, particularly for low–low–temperature SOFC applications. It is widely accepted that δ–Bi<sub>2</sub>O<sub>3</sub> exhibits higher conductivity than the YSZ electrolytes typically utilized in HT–SOFC units. The present study investigates the structural, thermal, surface, and conductivity characteristics of the Bi<sub>2</sub>O<sub>3</sub> electrolytes co–doped with Tb–Sm–Gd rare earth. The XRD data indicate that, except composition 20Tb20Sm20Gd, all compositions are stabilized with the cubic δ–phase at room temperature. The estimated lattice constants additionally suggest lattice contraction, confirming that the partial cation substitutes between host Bi<sup>3+</sup> and rare earth cations are successful. The DTA curves do not have any endothermic or exothermic peaks, indicating a possible phase transition. Arrhenius plots prove that DC conductivity decreases as the dopant ratio increases, implying a drop in polarization power. The highest conductivity is found to be 0.131 S/cm for the composition 10Tb10Sm10Gd.</p></div>","PeriodicalId":100923,"journal":{"name":"Micro and Nanostructures","volume":null,"pages":null},"PeriodicalIF":2.7000,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Synthesis and characterization of cubic δ–phase stabilized Bi2O3 electrolytes by triple rare earth cation doping for intermediate temperatures SOFCs\",\"authors\":\"\",\"doi\":\"10.1016/j.micrna.2024.207944\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Face–centered cubic–Bi<sub>2</sub>O<sub>3</sub> (δ–phase), a high–ion conductor, is an essential solid electrolyte option, particularly for low–low–temperature SOFC applications. It is widely accepted that δ–Bi<sub>2</sub>O<sub>3</sub> exhibits higher conductivity than the YSZ electrolytes typically utilized in HT–SOFC units. The present study investigates the structural, thermal, surface, and conductivity characteristics of the Bi<sub>2</sub>O<sub>3</sub> electrolytes co–doped with Tb–Sm–Gd rare earth. The XRD data indicate that, except composition 20Tb20Sm20Gd, all compositions are stabilized with the cubic δ–phase at room temperature. The estimated lattice constants additionally suggest lattice contraction, confirming that the partial cation substitutes between host Bi<sup>3+</sup> and rare earth cations are successful. The DTA curves do not have any endothermic or exothermic peaks, indicating a possible phase transition. Arrhenius plots prove that DC conductivity decreases as the dopant ratio increases, implying a drop in polarization power. The highest conductivity is found to be 0.131 S/cm for the composition 10Tb10Sm10Gd.</p></div>\",\"PeriodicalId\":100923,\"journal\":{\"name\":\"Micro and Nanostructures\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-08-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Micro and Nanostructures\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2773012324001936\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, CONDENSED MATTER\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Micro and Nanostructures","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2773012324001936","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
引用次数: 0

摘要

面心立方氧化物(δ相)是一种高离子导体,是一种重要的固态电解质选择,尤其适用于低温 SOFC 应用。人们普遍认为,δ-BiO 比 HT-SOFC 装置中通常使用的 YSZ 电解质具有更高的导电性。本研究调查了共掺 Tb-Sm-Gd 稀土的 BiO 电解质的结构、热、表面和电导特性。XRD 数据表明,除成分 20Tb20Sm20Gd 外,所有成分在室温下都稳定为立方体 δ 相。此外,估算的晶格常数还表明晶格收缩,这证实了主体铋和稀土阳离子之间的部分阳离子置换是成功的。DTA 曲线没有任何内热或放热峰,表明可能发生了相变。阿伦尼乌斯图证明,直流电导随着掺杂比例的增加而降低,这意味着极化能力下降。在成分为 10Tb10Sm10Gd 时,最高电导率为 0.131 S/cm。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Synthesis and characterization of cubic δ–phase stabilized Bi2O3 electrolytes by triple rare earth cation doping for intermediate temperatures SOFCs

Face–centered cubic–Bi2O3 (δ–phase), a high–ion conductor, is an essential solid electrolyte option, particularly for low–low–temperature SOFC applications. It is widely accepted that δ–Bi2O3 exhibits higher conductivity than the YSZ electrolytes typically utilized in HT–SOFC units. The present study investigates the structural, thermal, surface, and conductivity characteristics of the Bi2O3 electrolytes co–doped with Tb–Sm–Gd rare earth. The XRD data indicate that, except composition 20Tb20Sm20Gd, all compositions are stabilized with the cubic δ–phase at room temperature. The estimated lattice constants additionally suggest lattice contraction, confirming that the partial cation substitutes between host Bi3+ and rare earth cations are successful. The DTA curves do not have any endothermic or exothermic peaks, indicating a possible phase transition. Arrhenius plots prove that DC conductivity decreases as the dopant ratio increases, implying a drop in polarization power. The highest conductivity is found to be 0.131 S/cm for the composition 10Tb10Sm10Gd.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.50
自引率
0.00%
发文量
0
期刊最新文献
Investigation of Optical Interconnects for nano-scale VLSI applications Enhancing TFET performance through gate length optimization and doping control in phosphorene nanoribbons A novel nanoscale FD-SOI MOSFET with energy barrier and heat-sink engineering for enhanced electric field uniformity First principles study of the electronic structure and Li-ion diffusion properties of co-doped LIFex-1MxPyNy-1O4 (M=Co/Mn, NS/Si) Li-ion battery cathode materials Metamaterial structure design based on genetic algorithm and phase change material GST for multispectral camouflage
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1