包含准饱和效应的改进型碳化硅功率 MOSFET 温度可变直流模型

IF 1.4 4区 物理与天体物理 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC Solid-state Electronics Pub Date : 2024-08-12 DOI:10.1016/j.sse.2024.108993
{"title":"包含准饱和效应的改进型碳化硅功率 MOSFET 温度可变直流模型","authors":"","doi":"10.1016/j.sse.2024.108993","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, accurate temperature-dependent static model for Silicon-Carbide (SiC) power MOSFET is presented. The proposed model is formed by two equations relating to linear and saturation operating regions. In this model, new formalism of the saturation drain current is introduced to consider the peculiar features observed in the <em>I</em>-<em>V</em> static characteristics of the SiC power MOSFET: a) moderate inversion region, or region of low gate voltages and b) quasi-saturation region, region of high gate voltages at which the drain current becomes less sensitive to the increase of gate voltage. In addition, the model captures with high-precision the transition region between linear and saturation region, pinch-off region, noticed in the output characteristics of the SiC power MOSFETs. It will be shown that the model equations ensure continuity and smooth transition between all operating regions. Temperature scaling of the model is carried out by its temperature scaling parameters. The proposed compact model is simple and efficient using reduced number of technology independent parameters. Simple parameter extraction procedure is described that uses an optimizer algorithm based on good experimental initial guess. Excellent agreement is obtained by comparing model to TCAD simulation and device measurement.</p></div>","PeriodicalId":21909,"journal":{"name":"Solid-state Electronics","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2024-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Improved Temperature-Scalable DC model for SiC power MOSFET including Quasi-Saturation effect\",\"authors\":\"\",\"doi\":\"10.1016/j.sse.2024.108993\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper, accurate temperature-dependent static model for Silicon-Carbide (SiC) power MOSFET is presented. The proposed model is formed by two equations relating to linear and saturation operating regions. In this model, new formalism of the saturation drain current is introduced to consider the peculiar features observed in the <em>I</em>-<em>V</em> static characteristics of the SiC power MOSFET: a) moderate inversion region, or region of low gate voltages and b) quasi-saturation region, region of high gate voltages at which the drain current becomes less sensitive to the increase of gate voltage. In addition, the model captures with high-precision the transition region between linear and saturation region, pinch-off region, noticed in the output characteristics of the SiC power MOSFETs. It will be shown that the model equations ensure continuity and smooth transition between all operating regions. Temperature scaling of the model is carried out by its temperature scaling parameters. The proposed compact model is simple and efficient using reduced number of technology independent parameters. Simple parameter extraction procedure is described that uses an optimizer algorithm based on good experimental initial guess. Excellent agreement is obtained by comparing model to TCAD simulation and device measurement.</p></div>\",\"PeriodicalId\":21909,\"journal\":{\"name\":\"Solid-state Electronics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2024-08-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Solid-state Electronics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0038110124001424\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solid-state Electronics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0038110124001424","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了碳化硅(SiC)功率 MOSFET 随温度变化的精确静态模型。所提出的模型由与线性和饱和工作区域相关的两个方程组成。在该模型中,引入了新的饱和漏极电流形式,以考虑在碳化硅功率 MOSFET 的 I-V 静态特性中观察到的特殊特征:a)适度反转区域,即低栅极电压区域;b)准饱和区域,即高栅极电压区域,在该区域,漏极电流对栅极电压的增加变得不那么敏感。此外,该模型还高精度地捕捉到了碳化硅功率 MOSFET 输出特性中注意到的线性区和饱和区之间的过渡区,即掐断区。模型方程确保了所有工作区域之间的连续性和平稳过渡。模型的温度缩放由其温度缩放参数实现。通过减少与技术无关的参数数量,所提出的紧凑型模型简单而高效。描述了简单的参数提取程序,该程序使用基于良好实验初始猜测的优化算法。通过将模型与 TCAD 仿真和器件测量进行比较,可以获得极佳的一致性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Improved Temperature-Scalable DC model for SiC power MOSFET including Quasi-Saturation effect

In this paper, accurate temperature-dependent static model for Silicon-Carbide (SiC) power MOSFET is presented. The proposed model is formed by two equations relating to linear and saturation operating regions. In this model, new formalism of the saturation drain current is introduced to consider the peculiar features observed in the I-V static characteristics of the SiC power MOSFET: a) moderate inversion region, or region of low gate voltages and b) quasi-saturation region, region of high gate voltages at which the drain current becomes less sensitive to the increase of gate voltage. In addition, the model captures with high-precision the transition region between linear and saturation region, pinch-off region, noticed in the output characteristics of the SiC power MOSFETs. It will be shown that the model equations ensure continuity and smooth transition between all operating regions. Temperature scaling of the model is carried out by its temperature scaling parameters. The proposed compact model is simple and efficient using reduced number of technology independent parameters. Simple parameter extraction procedure is described that uses an optimizer algorithm based on good experimental initial guess. Excellent agreement is obtained by comparing model to TCAD simulation and device measurement.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Solid-state Electronics
Solid-state Electronics 物理-工程:电子与电气
CiteScore
3.00
自引率
5.90%
发文量
212
审稿时长
3 months
期刊介绍: It is the aim of this journal to bring together in one publication outstanding papers reporting new and original work in the following areas: (1) applications of solid-state physics and technology to electronics and optoelectronics, including theory and device design; (2) optical, electrical, morphological characterization techniques and parameter extraction of devices; (3) fabrication of semiconductor devices, and also device-related materials growth, measurement and evaluation; (4) the physics and modeling of submicron and nanoscale microelectronic and optoelectronic devices, including processing, measurement, and performance evaluation; (5) applications of numerical methods to the modeling and simulation of solid-state devices and processes; and (6) nanoscale electronic and optoelectronic devices, photovoltaics, sensors, and MEMS based on semiconductor and alternative electronic materials; (7) synthesis and electrooptical properties of materials for novel devices.
期刊最新文献
Achieving 15.75% efficiency in solar cells: Advanced surface engineering using Tetra-Tert-Butyl-Tercarbazol-Benzonitrile and organic layer integration in n-type silicon wafer and hybrid Planar-Si systems Editorial Board Spiro-OMeTAD Anchoring perovskite for gradual homojunction in stable perovskite solar cells Influence of gate work function variations on characteristics of fin-shaped silicon quantum dot device with multi-gate under existence of gate electrostatic coupling Silicon-based integrated passive device stack for III-V/Si monolithic 3D circuits operating on RF band
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1