{"title":"厄尔尼诺/南方涛动对中亚春季降水影响的年代际变化","authors":"Mengyuan Yao, Haosu Tang, Gang Huang, Renguang Wu","doi":"10.1038/s41612-024-00742-x","DOIUrl":null,"url":null,"abstract":"Spring Central Asian precipitation (SCAP) holds significant implications for local agriculture and ecosystems, with its variability mainly modulated by El Niño–Southern Oscillation (ENSO). The ENSO–SCAP relationship has experienced pronounced interdecadal shifts, though mechanisms remain elusive. Based on observations and climate model simulations, these shifts may result from transitions in ENSO-induced meridional circulation and Rossby wave trains triggered by North Atlantic (NA) sea surface temperature (SST) anomalies. During high (low) correlation periods, ENSO induces strong (weak) vertical motion anomalies over Central Asia, while NA SST anomalies exert a weak (strong) counteracting effect, modulated by the Pacific decadal oscillation (PDO). In the positive (negative) phase of PDO, a slow (fast) decaying ENSO triggers a strong (weak) NA horseshoe-like SST anomaly in the post-ENSO spring, affecting the ENSO–SCAP relationship. Our study identifies a strengthening trend in the ENSO–SCAP relationship since the 2000s, indicating improved predictability for SCAP in recent decades.","PeriodicalId":19438,"journal":{"name":"npj Climate and Atmospheric Science","volume":null,"pages":null},"PeriodicalIF":8.5000,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41612-024-00742-x.pdf","citationCount":"0","resultStr":"{\"title\":\"Interdecadal shifts of ENSO influences on Spring Central Asian precipitation\",\"authors\":\"Mengyuan Yao, Haosu Tang, Gang Huang, Renguang Wu\",\"doi\":\"10.1038/s41612-024-00742-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Spring Central Asian precipitation (SCAP) holds significant implications for local agriculture and ecosystems, with its variability mainly modulated by El Niño–Southern Oscillation (ENSO). The ENSO–SCAP relationship has experienced pronounced interdecadal shifts, though mechanisms remain elusive. Based on observations and climate model simulations, these shifts may result from transitions in ENSO-induced meridional circulation and Rossby wave trains triggered by North Atlantic (NA) sea surface temperature (SST) anomalies. During high (low) correlation periods, ENSO induces strong (weak) vertical motion anomalies over Central Asia, while NA SST anomalies exert a weak (strong) counteracting effect, modulated by the Pacific decadal oscillation (PDO). In the positive (negative) phase of PDO, a slow (fast) decaying ENSO triggers a strong (weak) NA horseshoe-like SST anomaly in the post-ENSO spring, affecting the ENSO–SCAP relationship. Our study identifies a strengthening trend in the ENSO–SCAP relationship since the 2000s, indicating improved predictability for SCAP in recent decades.\",\"PeriodicalId\":19438,\"journal\":{\"name\":\"npj Climate and Atmospheric Science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":8.5000,\"publicationDate\":\"2024-08-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.nature.com/articles/s41612-024-00742-x.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"npj Climate and Atmospheric Science\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.nature.com/articles/s41612-024-00742-x\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"METEOROLOGY & ATMOSPHERIC SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Climate and Atmospheric Science","FirstCategoryId":"89","ListUrlMain":"https://www.nature.com/articles/s41612-024-00742-x","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
Interdecadal shifts of ENSO influences on Spring Central Asian precipitation
Spring Central Asian precipitation (SCAP) holds significant implications for local agriculture and ecosystems, with its variability mainly modulated by El Niño–Southern Oscillation (ENSO). The ENSO–SCAP relationship has experienced pronounced interdecadal shifts, though mechanisms remain elusive. Based on observations and climate model simulations, these shifts may result from transitions in ENSO-induced meridional circulation and Rossby wave trains triggered by North Atlantic (NA) sea surface temperature (SST) anomalies. During high (low) correlation periods, ENSO induces strong (weak) vertical motion anomalies over Central Asia, while NA SST anomalies exert a weak (strong) counteracting effect, modulated by the Pacific decadal oscillation (PDO). In the positive (negative) phase of PDO, a slow (fast) decaying ENSO triggers a strong (weak) NA horseshoe-like SST anomaly in the post-ENSO spring, affecting the ENSO–SCAP relationship. Our study identifies a strengthening trend in the ENSO–SCAP relationship since the 2000s, indicating improved predictability for SCAP in recent decades.
期刊介绍:
npj Climate and Atmospheric Science is an open-access journal encompassing the relevant physical, chemical, and biological aspects of atmospheric and climate science. The journal places particular emphasis on regional studies that unveil new insights into specific localities, including examinations of local atmospheric composition, such as aerosols.
The range of topics covered by the journal includes climate dynamics, climate variability, weather and climate prediction, climate change, ocean dynamics, weather extremes, air pollution, atmospheric chemistry (including aerosols), the hydrological cycle, and atmosphere–ocean and atmosphere–land interactions. The journal welcomes studies employing a diverse array of methods, including numerical and statistical modeling, the development and application of in situ observational techniques, remote sensing, and the development or evaluation of new reanalyses.