{"title":"北太平洋西部热带气旋的平移速度减慢和向极地迁移","authors":"Xiangbo Feng","doi":"10.1038/s41612-024-00748-5","DOIUrl":null,"url":null,"abstract":"Detecting and interpreting long-term changes in typhoon translation speed in observations remains challenging, contrasting with increased confidence in the poleward migration of typhoons. Here, I show a significant relationship between the basin-wide translation speed and the latitudinal position of tropical cyclones in the western North Pacific over 1980–2023. First, because tropical cyclones move faster at higher latitudes, the significant poleward migration (80 km/decade) increases the yearly basin-wide translation speed by 5% over the period. This effect reduces the detectability of a slowing trend. Second, the basin-wide translation speed solely contributed by regional translation speed has slowed by 18%, mostly in the late stage of the cyclone lifecycle. The translation speed slowdown and the poleward migration are likely caused by the same climate drivers through the interconnected large-scale atmospheric circulation between the tropics and subtropics. My findings suggest exacerbated tropical cyclone-related risk in the subtropical regions in a changing climate.","PeriodicalId":19438,"journal":{"name":"npj Climate and Atmospheric Science","volume":" ","pages":"1-11"},"PeriodicalIF":8.5000,"publicationDate":"2024-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41612-024-00748-5.pdf","citationCount":"0","resultStr":"{\"title\":\"Translation speed slowdown and poleward migration of western North Pacific tropical cyclones\",\"authors\":\"Xiangbo Feng\",\"doi\":\"10.1038/s41612-024-00748-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Detecting and interpreting long-term changes in typhoon translation speed in observations remains challenging, contrasting with increased confidence in the poleward migration of typhoons. Here, I show a significant relationship between the basin-wide translation speed and the latitudinal position of tropical cyclones in the western North Pacific over 1980–2023. First, because tropical cyclones move faster at higher latitudes, the significant poleward migration (80 km/decade) increases the yearly basin-wide translation speed by 5% over the period. This effect reduces the detectability of a slowing trend. Second, the basin-wide translation speed solely contributed by regional translation speed has slowed by 18%, mostly in the late stage of the cyclone lifecycle. The translation speed slowdown and the poleward migration are likely caused by the same climate drivers through the interconnected large-scale atmospheric circulation between the tropics and subtropics. My findings suggest exacerbated tropical cyclone-related risk in the subtropical regions in a changing climate.\",\"PeriodicalId\":19438,\"journal\":{\"name\":\"npj Climate and Atmospheric Science\",\"volume\":\" \",\"pages\":\"1-11\"},\"PeriodicalIF\":8.5000,\"publicationDate\":\"2024-08-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.nature.com/articles/s41612-024-00748-5.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"npj Climate and Atmospheric Science\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.nature.com/articles/s41612-024-00748-5\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"METEOROLOGY & ATMOSPHERIC SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Climate and Atmospheric Science","FirstCategoryId":"89","ListUrlMain":"https://www.nature.com/articles/s41612-024-00748-5","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
Translation speed slowdown and poleward migration of western North Pacific tropical cyclones
Detecting and interpreting long-term changes in typhoon translation speed in observations remains challenging, contrasting with increased confidence in the poleward migration of typhoons. Here, I show a significant relationship between the basin-wide translation speed and the latitudinal position of tropical cyclones in the western North Pacific over 1980–2023. First, because tropical cyclones move faster at higher latitudes, the significant poleward migration (80 km/decade) increases the yearly basin-wide translation speed by 5% over the period. This effect reduces the detectability of a slowing trend. Second, the basin-wide translation speed solely contributed by regional translation speed has slowed by 18%, mostly in the late stage of the cyclone lifecycle. The translation speed slowdown and the poleward migration are likely caused by the same climate drivers through the interconnected large-scale atmospheric circulation between the tropics and subtropics. My findings suggest exacerbated tropical cyclone-related risk in the subtropical regions in a changing climate.
期刊介绍:
npj Climate and Atmospheric Science is an open-access journal encompassing the relevant physical, chemical, and biological aspects of atmospheric and climate science. The journal places particular emphasis on regional studies that unveil new insights into specific localities, including examinations of local atmospheric composition, such as aerosols.
The range of topics covered by the journal includes climate dynamics, climate variability, weather and climate prediction, climate change, ocean dynamics, weather extremes, air pollution, atmospheric chemistry (including aerosols), the hydrological cycle, and atmosphere–ocean and atmosphere–land interactions. The journal welcomes studies employing a diverse array of methods, including numerical and statistical modeling, the development and application of in situ observational techniques, remote sensing, and the development or evaluation of new reanalyses.