{"title":"利用压力驱动膜技术去除废水和其他水流中的重金属:通过文献计量分析展望反渗透、纳滤、超滤和微滤的潜力。","authors":"Katherinne Castro, Ricardo Abejón","doi":"10.3390/membranes14080180","DOIUrl":null,"url":null,"abstract":"<p><p>A bibliometric study to analyze the scientific documents released until 2024 in the database Scopus related to the use of pressure-driven membrane technologies (microfiltration, ultrafiltration, nanofiltration and reverse osmosis) for heavy metal removal was conducted. The work aimed to assess the primary quantitative attributes of the research in this field during the specified period. A total of 2205 documents were identified, and the corresponding analysis indicated an exponential growth in the number of publications over time. The contribution of the three most productive countries (China, India and USA) accounts for more than 47.1% of the total number of publications, with Chinese institutions appearing as the most productive ones. Environmental Science was the most frequent knowledge category (51.9% contribution), followed by Chemistry and Chemical Engineering. The relative frequency of the keywords and a complete bibliometric network analysis allowed the conclusion that the low-pressure technologies (microfiltration and ultrafiltration) have been more deeply investigated than the high-pressure technologies (nanofiltration and reverse osmosis). Although porous low-pressure membranes are not adequate for the removal of dissolved heavy metals in ionic forms, the incorporation of embedded adsorbents within the membrane structure and the use of auxiliary chemicals to form metallic complexes or micelles that can be retained by this type of membrane are promising approaches. High-pressure membranes can achieve rejection percentages above 90% (99% in the case of reverse osmosis), but they imply lower permeate productivity and higher costs due to the required pressure gradients.</p>","PeriodicalId":18410,"journal":{"name":"Membranes","volume":"14 8","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11355994/pdf/","citationCount":"0","resultStr":"{\"title\":\"Removal of Heavy Metals from Wastewaters and Other Aqueous Streams by Pressure-Driven Membrane Technologies: An Outlook on Reverse Osmosis, Nanofiltration, Ultrafiltration and Microfiltration Potential from a Bibliometric Analysis.\",\"authors\":\"Katherinne Castro, Ricardo Abejón\",\"doi\":\"10.3390/membranes14080180\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>A bibliometric study to analyze the scientific documents released until 2024 in the database Scopus related to the use of pressure-driven membrane technologies (microfiltration, ultrafiltration, nanofiltration and reverse osmosis) for heavy metal removal was conducted. The work aimed to assess the primary quantitative attributes of the research in this field during the specified period. A total of 2205 documents were identified, and the corresponding analysis indicated an exponential growth in the number of publications over time. The contribution of the three most productive countries (China, India and USA) accounts for more than 47.1% of the total number of publications, with Chinese institutions appearing as the most productive ones. Environmental Science was the most frequent knowledge category (51.9% contribution), followed by Chemistry and Chemical Engineering. The relative frequency of the keywords and a complete bibliometric network analysis allowed the conclusion that the low-pressure technologies (microfiltration and ultrafiltration) have been more deeply investigated than the high-pressure technologies (nanofiltration and reverse osmosis). Although porous low-pressure membranes are not adequate for the removal of dissolved heavy metals in ionic forms, the incorporation of embedded adsorbents within the membrane structure and the use of auxiliary chemicals to form metallic complexes or micelles that can be retained by this type of membrane are promising approaches. High-pressure membranes can achieve rejection percentages above 90% (99% in the case of reverse osmosis), but they imply lower permeate productivity and higher costs due to the required pressure gradients.</p>\",\"PeriodicalId\":18410,\"journal\":{\"name\":\"Membranes\",\"volume\":\"14 8\",\"pages\":\"\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2024-08-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11355994/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Membranes\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3390/membranes14080180\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Membranes","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/membranes14080180","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Removal of Heavy Metals from Wastewaters and Other Aqueous Streams by Pressure-Driven Membrane Technologies: An Outlook on Reverse Osmosis, Nanofiltration, Ultrafiltration and Microfiltration Potential from a Bibliometric Analysis.
A bibliometric study to analyze the scientific documents released until 2024 in the database Scopus related to the use of pressure-driven membrane technologies (microfiltration, ultrafiltration, nanofiltration and reverse osmosis) for heavy metal removal was conducted. The work aimed to assess the primary quantitative attributes of the research in this field during the specified period. A total of 2205 documents were identified, and the corresponding analysis indicated an exponential growth in the number of publications over time. The contribution of the three most productive countries (China, India and USA) accounts for more than 47.1% of the total number of publications, with Chinese institutions appearing as the most productive ones. Environmental Science was the most frequent knowledge category (51.9% contribution), followed by Chemistry and Chemical Engineering. The relative frequency of the keywords and a complete bibliometric network analysis allowed the conclusion that the low-pressure technologies (microfiltration and ultrafiltration) have been more deeply investigated than the high-pressure technologies (nanofiltration and reverse osmosis). Although porous low-pressure membranes are not adequate for the removal of dissolved heavy metals in ionic forms, the incorporation of embedded adsorbents within the membrane structure and the use of auxiliary chemicals to form metallic complexes or micelles that can be retained by this type of membrane are promising approaches. High-pressure membranes can achieve rejection percentages above 90% (99% in the case of reverse osmosis), but they imply lower permeate productivity and higher costs due to the required pressure gradients.
MembranesChemical Engineering-Filtration and Separation
CiteScore
6.10
自引率
16.70%
发文量
1071
审稿时长
11 weeks
期刊介绍:
Membranes (ISSN 2077-0375) is an international, peer-reviewed open access journal of separation science and technology. It publishes reviews, research articles, communications and technical notes. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. Full experimental and/or methodical details must be provided.